Latent Semantic Analysis for Multiple-Type Interrelated Date Objects – Xuanhui Wang, Jian-Tao Sun, Zheng Chen, ChengXiang Zhai

Problem

A common problem in database application is generating correlation between objects based on attributes of those objects. These correlation usually take the form a pairwise co-occurence. An edge is absent if there is no corresponding co-occurrence data and present if there is. This method of tuple based data does not effectively exploit all of the available information on a “multiple-type graph” in which there are multiple attributes associated with one another. 

Ex

{URL, outlinks, inlinks, ip addresses of visitors, semantic textual data}

Goal
Find the most salient concepts based on “mutual reinforcement” (similar to HITS algorithm). Use these concepts to span a unified semantic space and identify each object in a rank reduced approximation of the unified semantic space
LSA

Latent semantic analysis is based on the singular value decomposition of a co-occurrence matrix to identify the most important concepts of a co-occurrence related to the first n singular values of the decomposed matrix. 
M-LSA
Mutual reinforcement suggest that the important object co-occur with important attributes or objects of a different type.

Ex.


{Car, Engine, Manufacture, Color, Number of Cupholders, Buyers}

Something like manufacturer is more important to Buyers who are looking at a luxury car, while Buyers looking for a standard car may find the engine, or Car name itself to be more important. Mutual reinforcement would then weight the manufacturer higher for luxury car buyers, and Car name and manufacture higher for standard Buyers.
By generating a matrix for each possible permutation of object to object comparisons we can use mutual reinforcement to identify the most important concept corresponding to the greatest eigenvalue and then use this as a weighting vector to feed into the concatenated latent space that will be analyzed by LSA in the next step.

The concatenated latent space consists of all object to object comparisons. Each co-occurrence relational matrix’s values are weighted by the previously calculated concept weight vector. This matrix is then normalized and singular value decomposition is performed on it. The upper n eigenvalues and vectors are chosen and a reduced rank approximation of the matrix is calculated.

M-LSA is the general case of LSA. LSA performs factor analysis on tuple data. By using the M-LSA algorithm which initially computes a PCA with mutual reinforcement of  the tuple data, the eigenvector analysis will result in the general LSA case in which both correlation sets have equal vector weighting in the concatenated matrix.

Conclusions

In all test cases for collaborative and text mining applications, M-LSA outperformed standard LSA. This is clearly due to its ability to utilize all the information available in the multiple type graph. The improvement of M-LSA over LSA is statistically significant according to the T-Test based on performance metrics.
Probabilistic Latent Semantic Indexing – Thomas Hoffman
Introduction
PLSA is a method for automated document indexing based on probabilistic latent class model. The rationale toward document indexing in latent space is based on the idea that documents that share frequently occurring terms will have similar representations in latent space and therefore share similar concepts. Additionally there are noise elements that can hamper searches which can be removed by latent space representations of documents.
LSA

The general claim is that similarities between documents or between documents and queries can be more reliably estimated in the reduced latent space representation than in the original representation.

PLSA

PLSA improves upon LSA because standard techniques from statistics can be applied to the data to generate useful data for indexing. Because relations are not discrete vectors in semantic space and are instead probability distribution, PLSA deals with polysomony (words with multiple meanings) better than standard LSA

Aspect Model

The core of PLSA is to generate a model for the attributes of each document word correlation. This correlation corresponds to the case of given word w from the set of all words W in a dataset, what is the probability that w occurs with topic t in the set of all topics T based on a given probability distribution. 
Given a set of words w in a query Q, generate the probability of co-occurrence for that query and each document, and then return the highest probability documents.

Expectation Maximization

In this paper the author chooses a normal distribution as the probability distribution for the above aspect model. We have to define a way to generate data from document-word co-occurrence to generate the aspect model. The method of doing this is Expectation Maximization (EM). EM consists of two steps:

E-Step: generates the aspect model and computes a quality of fitting the current data

M-Step: uses the current model and iterates it toward a better fit of the actual data

The general EM algorithm is actually very similar to a maximization problem accept that it differs from calculating a least squared approximation and instead tries to maximize the log-likelihood function for a normal distribution over the given data.

Tempered EM
1. Due to the bumpy topography of latent space, EM suffers heavily from getting stuck in local minima. To combat this somewhat, the author proposes a method similar to simulated annealing in which a beta exponential smoothing factor is added to the EM equations in order to avoid this problem. TEM minimizes the free energy of the system by a form of homotopy. This is somewhat contrary to annealing as it minimizes free energy with a probability of jumping from some minima while in PLSA the system is heated to avoid overfitting by expanding areas of high/infinite curvature.
2. Set β ← 1 and perform EM until performance on held out data deteriorates

3. Decrease  β by some factor η < 1, e.g. β ←η β

4. As long as performance on held out data improves continue TEM iterations at β
5. Stop on β, stop when decreasing β doesn’t improve performance

6. Perform final EM iterations with the final β and the held out data included.

Similarity Search in High Dimensions via Hashing – Aristides Gionis, Piotr Indyk, Rajeev Motwan
Introduction and Problem
In this paper the authors describe a novel method to solve the approximate nearest neighbor problem using hashing. Their decision to do this is based on the “curse of dimensionality” which plagues most high dimensional data structure (above 20 or so dimension) with nearly exponential time complexities and in many cases resolves them to their brute force counterparts.  The motivation for using approximate hashing comes from the fact that an exact solution of the nearest neighbor problem is not needed. 

The paper discusses a few other methods of hashing and notes their benefits and shortcomings.

Algorithm

The goal of a hash based nearest neighbor method is to use hashing unlike usual hashing functions which try to avoid collision, but instead create collisions for points that are near one another. Then use a set of collisions of points to compute an approximate similarity measure between two points based on the Jaccard Metric. 
The first requirement is a family of hash functions that have the attribute of having a higher probability of hashing points that are near one another to the same bucket and a lower probability of hashing points that are far away from one to the same bucket. They refer to this family of function as Locality Sensitive Hash function. They then identify one such family of functions that exhibits this behavior based on hamming distance from a randomly generated string with replacement. The hamming distance measure counts the number of changes needed in order to convert a point’s coordinate vector into another. This will result in points that are near a particular point to have fewer changes, and points further away should have more. By generating many of these points you can define probabilities of locality similar to gray codes accept only a few permutations are generated. 
Input A set of n points P, and l hash tables

Output Hash Tables T​i i=1,…,l

For each i=1,…,l


Initialize hash tables by generating a random hash function g​ii​(.)

For each I = 1,…,l


For each j=1,...,n



Store point pj on bucket gi(pj) of hash table Ti

Input A query point q

Access to hash tables Ti
Output K Nearest Neighbor Points 
For each i=1,…,l


S ← S U {points found in gi(q) buckets of table Ti}

Return the k nearest neighbors of q found in Set S
Conclusion

By increasing memory overhead and allowing for some error, the paper presents a fast scalable solution to nearest neighbor problem. One improvement suggested is to change the random hash families generation from a random one, to something more optimal.

Multilevel k-way Document Clustering Experiments & Analysis – Krishna Gade, George Karypis
The authors of this paper discuss clustering semantic topics in word-document space. Word-Document space is a matrix with each documents corresponding to a row and each word corresponding to a column. The document vector is a vector describing the document based on the word counts contained in the document. 
ex

The cat went home

The car is home

… the cat car went is home …

      1    1     0    1     0    1     

       1    0    1    0     1    1

…

The word count’s values are degraded based on inverse document frequency. Inverse document frequency reduces the value of commonly occurring words by looking at the overall entropy of a particular word. The goal is to minimizing the impact of common words on the document vector as they do not necessarily impact the document. Such words as the, a, and, etc have little importance on the document’s semantic value and therefore should be devalued somewhat less than an important word.
The paper describes clustering as an optimization problem with the goal of maximizing the overall cluster criterion function F. 
      ​k
F= Σ || D​r ||
       r=1
F is the sum of the composite vectors D​r for each vector. Which is the cost of adding points in Dr to the kth cluster.

The optimization function
A common method to optimize this function is greedy in nature (such as K-means).

The initial phase is similar to k-means in which each seed of a cluster is picked as a random point from the set of possible points. For each point a distance is calculated for each seed. The point is then added to the closest seed, yielding a clustering solution for the criterion function F. 

However the paper improves the initial clustering by performing iterative random refinements. The list of points is visited at random and a point is moved to some other cluster and the criterion function is recomputed for the changed clusters. If the function improves the point is then moved to the improved cluster, otherwise it is not moved. The iterative refinement continues until the list is traversed with no improvement in the overall criterion function F. The greedy improvement converges to a local minimum. 

To further improve clustering, the algorithm is run multiple times in order to find the best solution from a set of independent cluster solutions.
Multilevel Optimizer
In this section the authors describe a method for reducing dimensionality and performing clustering, then projecting back into higher dimensionality and reclustering. The dimensionality reducing phases are called coarsening phases and there are several methods considered.

Random Coarsening – choose dimensions at random from the set of dimensions.

High Similarity Coarsening – This method finds similar points and reduces dimensions by simply concatenating their dimensional vectors. The initial running time is random, but can be improved by requiring that all compared points share some common term.

Coarsening by Partitioning – Create equally sized partitions and populate each partition with points most similar to that partition.

Coarsening by Hashing – Uses locality sensitive hashing to create lower dimensional approximation of the data based on points found in the same hash buckets. 

Coarsening by Hyperedge Partitioning- Create a graph where documents are nodes and the topics are the edges then randomly visit each hyperedge (column) and assign the unvisited vertices(columns) to a partition.
Basic Algorithm

Find the k-way partition of a coarsened matrix Mt using one of the aforementioned methods. Uncoarsen and refinement phase consists of projecting the coarsened partitions back into the original matrix and maintaining the clusters. Those clusters are then used as a seed for the next level of clustering.

Results

The multilevel clustering methods improve marginally on the k-means method for quality, and improve by a factor of 2 in running time. Partitioning based coarsening yields the best results in time complexity and cluster quality. 

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions -

Alexandr Andoni, Piotr Indyk
Introduction

In this paper the authors propose a new family of hash functions based on hyperspheres defined along a 24 dimensional leech lattice to achieve a near optimal hashing algorithm. 

The author first defines the problem of nearest neighbor in high dimensions and then briefly restates his previous description of the algorithm (available above in Similarity Search in High Dimensions via Hashing).

Drawing on previous research on hashing for approximate near neighbor search in high dimensions, the author tries to define a function that improves upon other methods of hashing.

Partitioning by Random Hyperline Projection
Is a family of hash functions that select a random subset of hyperline and place points in buckets depending on where they occur along the line. The authors of this paper cite whoever that this method varies in time complexity with the number of partitions defined along the hyperline. As the length of partitions decrease along the hyperline the time complexity increases inversely yielding no improvement.
Partitioning by Random MultiDimensional Projection
In this method points are projected into a space Rt  which is then partitioned into cells. The hash function defines the cell that a point lies within.

Grid partitioning into cells does not work because it will results in the concatenation of hyperline projections found in the previous step. Instead “ball partitions” are used to segment the projected subspace. Sequences of balls with a radius w are created with a random center and they define the cells corresponding to the buckets of the hash function. Because it would take too long to locate a point in each ball a grid of balls is used instead of balls with random centers. An exponential in t set of grids then suffices to span the entire space.
Leech Lattice
Because an exponential in t grid of balls would require far too much memory to be feasible for t even somewhat large an alternative method is proposed utilizing the 24 dimensional leech lattice.

Instead the authors used tessellations induced by randomly shifted voronoi diagrams of t-dimensional point constellations which have properties:

1. the closest constellation point to a given point can be found efficiently

2. the exponent p induced by the constellations is as close to 1/c2 as possible

where c is the approximation factor, and p is the hash computation complexity
One such constellation of points in 24 dimensions known as the Leech Lattice fulfills these requirements. The Leech Lattice gives the densest hypersphere packing in 24 dimensions. Due to the Leech Lattices high symmetry its voronoi diagrams are very round resulting in a bounded LatticeDecoder operation that only requires 519 floating point operations per decode.

Algorithm
Initialization of a hash function h in H

1. for u=1 to U, choose a random shift su in [0,4w]t , which specifies the grid Gtu = Gt + su in the t-dimensional Euclidean subspace
2. Choose a Matrix A in M​t,dwhere each element Ai,j is distributed according to the normal distribution N(0,1) times a scaling factor 1/sqrt(t). The matrix A represents a random projection from Rd to Rt
Computing h() on a point p in Rd
1. Let p’ = Ap be the projection opf the point p onto the t-dimensional subspace given by A

2. For each u = 1,2,… U

3. Check whether B(p’,w) ∩Gtu ≠ {} ie whether there exist some (x1,… xt) in Gtu such that p is in B((x1,… xt),w)
4. Once we find such (x1,… xt), set h(p) = (u, x1,… xt), and stop

5. Return 0t+1 if we do not find any such ball

Results
The locality sensitive hash function described presents a nearly optimal hashing algorithm in d-dimensional Euclidean space, with query time O(dn1/c*c+o(1)) and space O(dn+n1+1/c*c + o(1)). Which is a constant factor from the lower bound found for optimal hashing functions.
