Introduction

The goal of this paper is to summarize information presented in several conference papers about botnets. A full listing of these papers is presented on the last page. There will be a lot of general information presented about botnets, as well as techniques for mitigation, crawling, forensic investigation, and characterization and grouping.

I make no claim at having discovered any of the information and techniques written hear. I am merely summarizing information presented by all the authors in the reference section of this paper.

Background Information

In order to be considered a bot, a computer must have been compromised in some way where a bot program is installed on the machine. This can be done via a remote exploit, a trojan horse, a worm, or any other way that allows malicious code to be run. Not only this, but the program must contain a control mechanism for the attacker so he can control the computer in whatever way he pleases. This is usually done without the knowledge of whoever is operating the computer (otherwise the program could be removed).

When multiple bots come under the control of one attacker or a group of attackers, they can form a botnet. There is usually a common control infrastructure that connects all the bots together and allows them to receive the attacker's commands. With so many computers controlled in this way, a large amount of bandwidth and computing power becomes available to the attacker. This poses a tremendous problem on the internet. Because of the large pool of resources and the fact that these resources are distributed across many different locations, illegal actions can be performed effectively and without revealing the location of the true attacker.

One of the most common uses of a botnet is sending spam emails. The controllers of the botnet can rent their bots to whoever will pay money to send out these emails. In other cases, spam can be used trick users into installing the malicious software on their machines, turning them into bots as well.

Distributed denial of service (DDOS) attacks are also a common use of botnets. With so many computers available, the controllers can instruct them to initiate as many connections as possible to whoever they wish to deny service to. Stopping an attack like this is often time-consuming, because every individual connection must be shut down at the local ISP level. In many circumstances, this type of attack can be financially devastating, as services cannot be provided to legitimate users.

Finally, botnets can be used to host large amounts of pirated software, music, movies, and other “warez.” This is a result of all the bandwidth gained by the attacker and the lack of accountability by hosting these files on other user's machines. The attacker can place whatever they please on the bot machines hard drives, then instruct them to allow others to download these materials.

Researching botnets can be a difficult task. Understanding how a bot program runs and how it interacts with the rest of its network is vital. A typical method for accomplishing this begins by setting up something called a honeypot. Honeypots are machines in a controlled environment that have certain vulnerabilities that botnets target. These machines allow themselves to be compromised with the bot program, and then it is possible to analyze this executable in further detail.

Reverse engineering an executable is one of the most useful ways of understanding the bot program. This allows the researcher to recover many specific details about how a bot operates, including such things as symmetric keys used in encryption, control commands, and many other useful functions. Once this is accomplished and the bot is understood, the researcher can then begin to write his own program to interact with the botnet.

Control Techniques

Control techniques for botnets have evolved over time. When installed on a user's computer, the bot program contains information about how to connect to the botnet infrastructure, as well as commands to listen to from the controller. The classic technique to control a botnet has been to use IRC (Internet Relay Chat). In this scheme, all bots on the network connect to a central server using the IRC protocol. They then join a specific channel where the person controlling the botnet resides. He can then issue commands through this channel that allow for interaction with all the bots.

Another popular control technique in the past has been to use a web server. The attacker can post commands to this server, then the bots read these and carry them out. However, there is a major problem for the botnet operators with this technique, as well as the IRC technique. Once the botnet is discovered by law enforcement, it is a simple task to shut down the physical server that all the bots connect to. This effectively cuts the head off of the botnet and it can no longer operate.

The latest technique is to use a peer-to-peer (P2P) network to control the botnet. P2P networks have no centralized server, thus they all act as peers to each other. This has a huge advantage in that it cannot be shut down by closing a single server. P2P networks have very high resiliency because they can cope with single nodes joining a leaving the network at a high rate. This has obvious benefits for the attacker because it is still very difficult to track the person behind the botnet, and it is much more difficult to shut down.

Because P2P is the latest technique used in the wild, this paper will focus primarily on botnets that use this structure.

Structure of a P2P Botnet

Before we can discuss how to solve various problems associated with P2P botnets, we need to understand how they operate. A popular style of communication with these P2P botnets is something called the publish/subscribe method. This method is also used in popular file sharing systems such as Gnutella, eMule, and Bittorent. In this method, a node that has information that is available for other nodes publishes this information using an identifier derived from the information itself. Other nodes that wish to obtain this information can then subscribe to it by using a filter on these identifiers.

Routing is handled in these botnets by using a distributed hash table (DHT). When a node joins the network, it randomly generates a 128-bit ID. It then advertises this to its neighbors, which can store the ID in their DHT lookup tables. In order to route traffic in a P2P network like this, nodes perform look ups to find the node with the closest distance. This distance is determined by XORing the ID of two nodes and taking the smallest number.

So how does this work when publishing some content on the network? If a node wishes to publish content, it generates a key based off that content and its own DHT ID. As a result of this function, when nodes are performing a look up request for a certain key, that key will be XORed with IDs of other machines. The closest ID is the node to direct the request to. This ultimately leads to the node who is publishing the information and it can be retrieved by the subscriber.

A major weakness (which is exploited to defeat the network later) is that this information is unauthenticated. The subscribers do not check to make sure the information comes from a valid source (i.e. another bot in the botnet). This means that researchers who are attacking or spying on the network can easily join and publish any information to be read by the botnet.

Mitigating P2P Botnets

Shutting down a P2P botnet is a difficult task, because of its lack of a centralized server. Nevertheless, Thorsten Holz et al discuss a way to accomplish this by polluting the network so the peers are unable to communicate with each other.

In order to pollute the botnet, it is necessary to infiltrate it so commands can be published to all the nodes. This can be accomplished by carrying out a Sybil attack. Essentially, this introduces malicious peers into the network by carefully choosing the DHT IDs of the sybils so that lookup requests find a closer DHT ID at one of the sybils. This, in turn, causes all routing on the network to run through these computers. The following steps help illustrate what happens (quoted directly from [1]):

1. Crawl the DHT ID space using our crawler to learn about the set of peers P currently online.

2. Send hello requests to the peers P in order to “poison” their routing tables with entries that point to our sybils. The peers that receive a hello request will add the sybil to their routing table.

3. When a route request initiated by non-sybil peer P reaches a sybil, that request will be answered with a set of sybils whose DHT IDs are closer to the target. This way, P has the impression of approaching the target. Once P is “close enough” to the target DHT ID, it will initiate a publish request or search request also destined to one of our sybil peers. Therefore, for any route request that reaches one of our sybil peers, we can be sure that the follow-up publish request or search request will also end-up on the same sybil.

4. Store the content of all the requests received in a database for later evaluation.

Once this has been accomplished, it is possible to spy on the nodes of the network, or even send commands to try and break the structure of the network. The authors of [1] used this structure to carry out their pollution attack. This is done by preventing peers from retrieving search results for any given key K by publishing a very large number of files using K. This overwrites all of the content previously published under K.

In order to effectively remove all of the existing keys of K, the botnet must be continuously crawled and the fake keys must be sent to the IDs that are very close to K (within 4 bits). When a normal search is launched for K, it will closely look at all the IDs near K, and there will be a large number of results returned for K at these IDs. This will cause the search to terminate (rather than look at IDs that are further from K). Because so many keys were found, all of which are fake, the bot will think it has the correct information.

To evaluate the effectiveness of this attack, the authors used both a normal search (one that the bots use) as well as an exhaustive search that they developed. They used both of these searches to try an locate a real key after the network had been polluted. The standard search shows that the real keys are all but wiped out on the botnet, while an exhaustive search can still find the real keys on some bots. However, this is easily enough to disrupt the communication of the botnet.

[image: image1.png]

Crawling P2P Botnets

Part of the challenge of researching P2P botnets is the difficulty in crawling them. There are many factors that can badly skew the numbers of actual bots being crawled, including but not limited to NATed addresses, other researchers, and other normal users of a P2P network.

In order to crawl botnets, researchers must first understand the protocol and communication methods used by whichever botnet they wish to crawl. As mentioned before, this typically begins by reverse engineering a bot executable, but can also be accomplished by sniffing network traffic generated by a bot. Once the communication techniques are understood, a program can be written to crawl all the nodes on the network.

The authors in [2] created a crawler called Stormdrain. As indicated by the name, it is used to crawl the Storm P2P botnet. The following is a description and a flowchart of the crawler's operation:

1. Stormdrain learns of new nodes as it crawls the routing tables of peers on the network, and when it receives unsolicited messages from other peers. When a new peer replies to a probe, Stormdrain moves it to the live state.

2. If a new peer does not respond to any probes, Stormdrain places it in the removed state.

3. If a peer responds to a sufficient number and kind of probes, the peer moves from live to active. If an active peer falls below that threshold it moves back to the live state. They use different kinds of messages and require multiple responses to help differentiate between actual Storm nodes and masquerading active responders.

4. Stormdrain moves a live peer that has not responded after a timeout expires to the dead state (there are many reasons why a node may not respond). A dead peer that responds before being removed moves back to the live state. Stormdrain currently uses a timeout of 15 minutes.

5. Stormdrain probes dead peers at a lower rate. If it does not respond after a timeout, it moves to the removed state.

6. An active peer that appears to be abusing Overnet (flooding, poisoning, broken implementation, etc.), moves to the removed state immediately and by passes any other state.

7. Any short sequence of probes to a peer that generate ICMP error responses moves that peer to the removed state, again bypassing any other state.

8. If a removed peer that was previously dead starts responding again, it moves back into the live state. Stormdrain clears all statistics and counters for the peer and treats it as if it were a new peer.

[image: image3.png]Number of Peers

45000 Al poers
Respopding besrs
40000 Active peers
Aotve Sorm boers
35000
30000
25000
20000 / .
15000 | | [IRVERVERVERVERVAN / [\/
10000 N \
0301 0903 0305 0307 0905 031 0313 0315 0317 031 0321

Date

So each stage can be defined as such:

1. New nodes are those that have been advertised, but have not responded yet.

2. Live nodes are those that have responded, but have not been identified well enough to be considered actual Storm nodes.

3. Active nodes have been identified as Storm nodes.

4. Dead nodes are those that have expired, but could become alive again

5. And Remove nodes are considered dead but are no longer to be tracked.

Using this crawling method, the authors were able to track and count the number of Storm peers over a time period of around 3 weeks. The following is a nice chart showing the numbers:

[image: image2.png]oxp oo |
e -
= oo

(@) Using the standard search. (b) Using the et seach.

In order to determine if a node is a real Storm node or not, many things must be taken into account:

1. As mentioned before, if a node does not respond to a query, it is removed.

2. If a node sends information about other peers into the network at too fast of a rate, it is considered bogus and is removed. This is because the implementation of the routing algorithm that the Storm botnet is based on is not very aggressive during the bootstrap phase.

3. If a node reports more than a small proportion of bogon addresses (RFC 1918, Multicast, IANA Reserved, etc.), it is removed.

4. Finally, if a node reports a DHT ID outside of the possible Storm IDs, it is removed. The authors found that the random number generator for generating the IDs of the Storm botnet used only a very small space of the possible IDs (only 32768). This allowed them to easily discard nodes that used a different ID than was possible.

It is certainly possible that there were some peers that so closely emulated a Storm bot that the crawler was unable to distinguish between them and a real bot. This is unfortunate, but it is never possible to completely obtain enough information from these bots when crawling them.

Conversely, it is possible that some Storm nodes were marked dead falsely. Consider nodes behind a NATed network that has a silent drop firewall or some other mechanic that denies information. Probes sent to these nodes would not be able to reach their destination, and hence would be removed or marked dead, even though they were actually part of the Storm network.

As the authors of [2] pointed out, crawling the Storm botnet is much more difficult than it would initially seem. Even with the heavily documented Overnet protocol (which Storm is based on), there are a lot of other factors that make crawling it difficult.

Forensic Analysis

Because botnets are almost always used to commit cybercrimes, it is important to know what steps to take in the event of an attack. The authors of [3] discuss a specific type of P2P botnet that is propagated through a peep attack. This is really not much different than how other botnets infiltrate computers, so it is not worth going over, but the focus of the paper was in discussing what you should do after you are compromised.

First, they list several steps that should be taken immediately:

1. Check the system clock and record the time of any events.

2. Collect all network settings. This includes the IP address, subnet mask, and default gateway of the compromised machine.

3. Examine all running processes.

4. Examine system directories for any suspicious files.

5. Look for any startup information about running the malicious program. This could be in the registry in Windows or anywhere programs are run at startup for other operating systems.

Next, it is necessary to look deeply at the computer system and determine if there are any other unusual executables. Attackers try to evade detection, so they could name their programs to look like a real system file or any other devious method. It is also useful to look at modify times on files in the system to discover files that were created or accessed at the time of the compromise.

By analyzing traffic coming to and from the compromised computer one can gain valuable information. For instance, if the attacker places more importance on certain nodes in the botnet (perhaps a more tiered structure), it could be possible to discover these and track them down. Also, it would be possible to detect if any important information were being stolen over the hacked computer.

It is also possible for attackers to use well known ports such as 25 (Mail), 53 (DNS), and 80 (HTTP) to “piggyback” through network firewalls and evade detection. By sniffing packets, abnormal packets passing over these ports could be found if one were to take the time to analyze them.

Personally, I thought this was one of the weaker papers I read. Not only did the authors fail to go into any real detail about these forensic techniques, but there were also some things that didn't seem that useful. For example, they suggested examining all of the running processes on a compromised computer for any miscreant executables. It is well known that good viruses use rootkits to hide themselves from not only the processes list, but the system kernel and log files. Simply looking for suspicious files and rogue processes would likely not reveal anything.

I suppose these techniques could be used as a starting point, because certainly not all viruses will be good enough to hide themselves. Also, I'm sure there are many papers that delve deeper into the details of computer forensics.

Botnet Characterization From Spam

It is well known that there are many different types of botnets in the wild today. It is useful to be able to determine membership within botnets so as to distinguish between them and recognize which networks certain bots belong to. By analyzing spam email messages, this can be accomplished for a wide variety of botnets, since many of them are involved in spam campaigns or propagate through these methods.

There are other techniques for tracking and grouping botnets, such as sniffing traffic on a network, or capturing viruses with a honeypot and analyzing the executable. The authors of [4] argue that these methods are much more difficult for tracking large numbers of botnets. By characterizing botnets from spam, they do not need to worry about things such as encryption and customized protocols, since they only look at the end result (spam).

In order to accomplish this task, the authors looked a very large amount of spam received over the period of about a week. First, they clustered the email messages into spam campaigns by looking at email messages with identical or similar content. In order to do this, they used the shingling technique to create fingerprints through the messages, and then connect messages that have enough fingerprints in common. This has the downside of not being able to handle images, but it works well for text-only emails.

When doing this, it is necessary to avoid spam that was generated by non-bots. In order to try and filter out these messages, the authors built a set of heuristics as follows:

1. They built a list of known relaying IP addresses including SMTP servers from ISPs, MTA servers, popular proxies, open relays, etc. If an IP address is on this list, it is not looked at.

2. They removed senders who were all within the same class-C subnet, which is likely owned by one spammer, and not a botnet.

3. They remove those campaigns that are from less than three geographic locations (cities), since botnets are almost always very spread out.

Second, the issue of dynamic IP addressing must be taken into account when estimating the size of a botnet. Since this seems to be one of the only metrics they consider when estimating the size of a spam campaign, this may not be very accurate if used to determine the number of bots as a whole in a botnet. As mentioned above, it is difficult to crawl a single botnet accurately, much less try and determine the number of bots in many botnets. So, this spam technique should only be used as a measure of the number of bots involved in a spam campaign, not the whole botnet.

The authors tried to measure the reassignment of IP addresses by assuming that within a particular C-subnet, the reassignment was uniform. Along with this, they assumed that it followed a Poisson process. By looking at MSN messenger login records, they were able to determine the average lifetime of an IP address, and the maximum distance between two different IP addresses assigned to the same host. From this, they were able to create a PDF to model IP reassignment.

This function was used to identify whether two different spam campaigns where part of the same botnet. Given an event from two different spam campaigns with IP addresses for each, they could assign a weight to the connection between the two based off the probability that the IP addresses came from the same machine. So if there are many strong connections between two spam campaigns, the two are assumed to be from the same botnet and are merged.

This technique is definitely promising, but I saw two issues with it. First, they assume IP addresses are dynamically assigned for every network. While it is true that the majority of IP addresses are dynamic, there are definitely some that are static. This could skew the PDF for the IP reassignment.

Also, the authors did not take NAT into account. This would probably have a very large effect on estimating the size of a particular botnet. A network behind a NAT firewall would appear as if many messages originated from one IP, when in fact there could be numerous hosts behind that IP.

By using this technique, they were able to find 294 unique botnets. Now, this number is probably not entirely accurate, but it seems like a realistic estimate. Also, they discovered that 50% of the botnets contained 1000 or more bots each. Because they did not take NAT into consideration, this number would probably change a good bit.

Conclusion

Botnets are a huge problem for the internet today. They can easily be used for DDOS attacks, spam, phishing, and other nefarious activities. The more that is understood about how they operate and how they can be disrupted, the safer our networks will be as a whole. Unfortunately, simply studying botnets and learning to disrupt them is only part of the battle. There are major problems in other areas that also allow botnets to exist (insecure computers, IP spoofing, etc.). Perhaps someday many of these problems will be solved, but right now that is a long way off.

