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Abstract— Banknote validation systems are used to discrimi- basic banknote specific information. Subsequently, theesys

nate between genuine and counterfeit banknotes. The paper®  can be updated to use in-depth security features provided by
pose a one-class classifier for genuine class using a new sarity an expert.

measure, Fuzzy Hamming Distance. For each banknote several
regions are considered ( corresponding to security featus) and
each region is split in m x n partitions, to include position Il. Fuzzy HAMMING DISTANCE

information. The feature space used by the classifier cons&s A  |ntroduction

from color histograms of each partition. The Fuzzy Hamming

Distance proves to have a good discrimination power being ab The Fuzzy Hamming Distance is a generalization of Ham-

to completely discriminate between the genuine and countéit mjing distance over the set of real-valued vectors. It preser

banknotes. the original meaning of the Hamming distance as the number
|. INTRODUCTION of different components between the input vectors with the

gdded features that it uses real-valued vectors and it fakes

ATMs, banks or vending machines. The key element of aut ccount the amount of the difference between each component
' ' FHD is the (fuzzy) number of different components of the

matic banknote handling is the banknote validation sys&em.. :
banknote validation system check whether the input baraakn(b@put vectors. The fuzzy set shows the degree to which the

is genuine or a counterfeit. The input banknote is scannk—lfhw’Ut vectors arﬁ dlffer:ent by, 1,....2, V\_/hereﬁ, IS the.SIer of
using different sensors varying from optical scan to magnef e(;/_ectlprs. :cnﬁ 0(;_tf'_ft € Fuz?y Hammmgthstfnce _'St eyfuzz
scan. Then the acquired attributes are compared with {Edinality of the difference fuzzy set. Therefore, in artte

templates for each banknote type. If a match is found thglﬁfll?e ét_,ﬁone n;eds to define mlordler Lh; concep;td;egfee
the banknote is genuine, otherwise is considered couitterfe®! the differencéetween two real valuesjiierence fuzzy set

This problem can be seen as one-class classification bec make use of the conceptsazfrdinality of a fuzzy seand

the number of counterfeit examples available is very smaffefuzzification of a fuzzy set
Also it is required that the genuine class is learned vey Degree of Difference

well. This is the approach in Girolami's work [1], where "
each banknote is divided inte x n regions. An individual ~ Definition 1: (Degree of difference [5]: Given the real
classifier is built for each region, then classifiers are doeth Vvaluesz andy, the degree of difference betweenand y,
to provide an overall decision. To find the best values féRodulated by > 0, denoted byd, (z,y), is defined as:

m andn a genetic algorithm is used. This approach assures

; . ) —1_ g ale—p?
that the system will work with any banknote,i.e. no banknote do(z,y) =1—e ’ . (1)_
specific information is used. The parameterr > 0 modulatesthe degree of difference in

Even though this approach simplifies the update of tfe sense that for the same valuejef- y/, different values
system, by not using expert knowledge for setting the systeftf @ Will result in different values ofi,, («, y).
it ignores valuable information regarding security featuthat
are banknote specific.

In the previouse studies, [2], [3], [4], Fuzzy Hamming Dis- Using the notion ofdegree of differencalefined above,
tance proved to be efficient in a Content Based Image Relriethe difference fuzzy sdb,(z,y) for two vectorsz and y,
system, that output the closest images in the database giigedefined as:

a quey image. The study proposed in this paper investigate®efinition 2: (Difference fuzzy set for two vectors [5])
further the discrimination power of HD in the case where Let = andy be two n-dimensional real vectors, and let,
the compared objects are very similar, genuie and couiitterfig denote their corresponding” component. The degree of
banknote, unlike the CBIR case where the compared objedifference betweemr andy along the componerif modulated
are just close. by the parametety, is d, (x4, v:)-

The Fuzzy Hamming Distance based approach, proposedhe difference fuzzy set corresponding & (z;,y;) is
here, combines the versatility of an automatic system with, (x,y) with membership function

Automatic banknote handling is a huge industry includin

C. Difference Fuzzy Set



KD, (zy) 11, .,n} — [0,1] given by equation 2: BEHD(2,y) (- @) :{0,...,n} — [0, 1] denotes the member-
) ship function forF H D, (z,y) corresponding to the parameter
1D, (2,y) (i) = do(Ti, yi) ) . More precisely,
In words, iup, (2., (i) is the degree to which the vectars
andy are different along theifth component. The properties

of up,(z.) are determined from the properties @f(x;, y:) HFED(2,y) (K @) = leardD, (o,y) (K) (5)
[5]. for k € {0,...,n} wheren = |SupportD,(z,y)|.

dinality of a f dCri dinall In words, (5) means that for a given valué,
D. Cardinality of a fuzzy set and Crisp Cardinality JPHD(. (k; o) is the degree to which the vectorsand y

Of subsequent use in this study is the notiorcafdinality are different on exactlys components (with the modulation
of a fuzzy sefThis concept has been studied by several autharsnstanta).
starting with [6], and continuing with [7], [8], [9], etc. He Example 1:Consider two vectors andy with |z — y| =
the definition put forward in [8] and further developed in [9]2,1,4,3,5). Their FHD is the same as that between the

is used. vector,0 and [z — y| = (2,1,4,3,5) (by Property (4) of
Definition 3: (Cardinality of a fuzzy set [8]):Let do(z,y)). Therefore, theFHD betweenz and y is the
n cardinality of the fuzzy setD(|z — y|,0) = 1/0.9817 +

A= Zﬂfz’/ui 2/0.6321 + 3/1 +4/0.9999 + 5/1 obtained according to (3).
= For a = 1 this is obtained to be’HD = 0/0 + 1/0 +

2/0.0001 + 3/0.0183 + 4/0.3679 + 5/0.6321. In words, the
meaning of FH D is as follows: the degree to which and
y differ along exactly0 components (that is, do not differ)
is 0, along exactly one component @ along exactly two

denote the discrete fuzzy sdtover the universe of discourse

membership forz; to A. The cardinality,CardA, of A is

a fuzzy set components i€.00013, along exactly three components is
n 0.0183, and so on. The difference fuzzy set and the fuzzy
CardA =" i/pcaraali) Hamming distance for this example are shown in Figures 1
=0 and 2 respectively.
where
1 * *
tcarda(i) = pgiy A (1 — pigiyay) 3) 1 /

L ! 4

where pu(; denotes theith largest value ofu;, the values — °%[ /
#o) = 1 andp,41) = 0 are introduced for convenience, anc \ /

A denotes thenin operation. ooy /! 7

For the defuzzification of the fuzzy cardinality of a fuzzy? "™ / |
set A, the non-fuzzy cardinality,Card(A), introduced in [9]
is the only one which guarantees that the result is a whc
number, and therefore satisfies its semantit®e number of 075 \ , i
... Starting from a set of requirements aard(A), it is \ /
shown in [9], thatnCard(A) is equal to the cardinality (in o7 \ ’ .
classical sense) ofly 5 the A-level set of A with A = 0.5. Vi
More precisely, 065 v ]

degree of difference
o
o
T
L

nCard(A) = |{z;ua(z) > 0.5} 4) 06} : ‘ ‘ ‘ - " = .
Ix=yl

where for a setS, S denotes the closure &.
Fig. 1. The difference fuzzy set for the data in Example 1.

E. The Fuzzy Hamming Distance

By analogy with the definition of the classical Hammin The_tpr(c)jp?rt_lte_s of the F(;J.ZZil.tHaTm"}g D|stantce fgllows
distance, and using the cardinality of a fuzzy set [10], [Girom IS “definition as cardinality of ‘a fuzzy set and are

. . ! , - summarized in the following proposition:
[7], the Fuzzy Hamming Distancé"{# D) is now defined as: Proposition 2.1:1n the following,z, y, z are real-valuea-

dimensional vectors, and € ® andnF' HD is the defuzzifi-
cation of F’'H D usingnCard according to equation 4.
1) IUFHD(z,y)(k;a) 2 0! Vk= O,,ﬂ+ ]-1

Definition 4: (The Fuzzy Hamming Distance) [5]Given
two n dimensional real-valued vectors, and y, for which
the difference fuzzy seb,(z,y), with membership function
1D, (x.y defined in (2), théuzzy Hamming distancebetween 2) It ppHD(.y) (ks a) =1 then
xz andy, denoted byF'H D, (z,y) is the fuzzy cardinality of . 1 ifj=0,...,k
the difference fuzzy set), (z,y): BEHD () (T @) = { 0 ifj=k+1,...,n
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Fig. 3. nFHD(0.5,z) wherez in[0,1] for different 8

Fig. 2. FHD for the data in Example 1 with the difference fuzst shown . . . .
in Figure 2. where (z;,y;) IS a generic component pait,— ¢ a desired

lower bound on the membership value ko7 D (as defined
in (5)), and M some positive constant. In particuldd] can
3) traD(.2)(0;a) =1 andppppa,.) (ki) =0,V k= be setasVl = 3L; wherej € [0, 1] , which leads to
1,...,n;
4) HEHD(z,y) (0,0l) =1 < z= Y 1— E*Qi(mi*yi)Q >1—¢
5) UrHD(2.y) (k;Q) = LpHaD(y,2) (k;Q), YV E=0,...,n; o
6) For anya € R, there exists at least one permutatioffom which it follows that

z,y, z such that &> : 1 )2ln1 )
T —Yi €
nFHDa(z,y) <nFHDa(,2) + nFHDal(y, 2) This leads to the following formula for defining the value for
wherenFHD,(-,-) correspond¥"HD. .(-, ); the parameten: along thei’” component:
7) For anyz,y, z there existay, as, a3 such that
Ini 1
nFHD,, (z,y) <nFHD,,(x,z) + nFHD,,(y, z) o; = L; 7 9)
(3

8) There existsy, such that for binary vectors, theCard  \here .; and 3 have the meaning stated above.can be
defuzzification of the Fuzzy Hamming Distance coingiewed as the percentage frofly that is considered as a
cides with the classical Hamming Distance(HD) betweeghange for that column.
these vectors, that is,CardFHD(xz,y) = HD(z.y)  For example, for3 = 0.1 (10%), L; = 255 ande = 0.5, f

the difference between compared components of the vestors i

greater ther25.5 then the degree of change will be greater than

The Fuzzy Hamming Distance can be adapted to includeja ¢ = 0.5, and therefore it will be counted in defuzzification
scaling factor and threshold for the amount of the diffeeenef FHD.

necessary for the difference to be considered as a changdor 8 = 0 if x; # y; the degree of the difference is 1. Since

Let z; andy; are thei'” component of the vectors andy, 3 can be different for each columi,H D sensitivity can be

zi,y; € [a;,b;]. The length of the domain for; andy; is controlled differently for each column (feature).

L;=b;—aqa; Figure 3 shows the nFHD between the pdiib] and the

One way to set the value fer is to impose a lower bound points in the interval0, 1] for different € [0,0.5].
on the membership function subject to constraints on the

. . ; IIl. THE DATASET
difference between vector components, such as described in ) ) .
(6) and (7). The dataset used is generated by scanning one dollar bills

using 600 dpi resolution, as follows:
« For genuine banknotes:
LD, (ey) (1) = da(Tisyi) > 1 —¢€ (6) — 10 scans of the same banknote;
— one scan of 10 different banknotes;
« For counterfeit banknotes:
— 10 prints and scans of $1 banknote;
i — il > M (7) — one scan of $5,$10,$20,$50,$100 banknote;

F. Adapting Fuzzy Hamming Distance

subject to
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Fig. 6. One of the 32 average color histograms of the noregllzanknote,
using a2 x 2 partitioning

B. Training

The goal of our system is to recognize well one class, the
genuine banknotes. Genuine examples are used to train the
classifier by computing the the average histograms of each
partition on each region. The genuine class prototy@E&)X
consists from8 x m x n average color histograms. Figure 6
shows one of the histograms.

Fig. 5. Normalized Banknote

C. Classification

Classification is done based on a threshold classifier us-
The system consists from three modules: ing the Fuzzy Hamming Distance.F"H D between the test
banknote and the genuine class descriptor is computed and if
the distance is less then a certain threshpls considered
genuine, otherwise is considered counterfeit.

IV. SYSTEM DESCRIPTION

1) Feature Extraction;
2) Training;
3) Classification;

N m-n

A. Feature Extraction 1 1
> nFHD(X;;,GP;;))
1

D(X,GP) =
The feature space used in this study, consists from color i=1
histograms but it can be extended to any available space, lU@hereXij is the color histogram af" region andjt* partition

the magne_tlc signature. . of the test item,N is the number of regions andF'HD is
The attributes for each banknote are computed in thes jefyzzification o’ HD using crisp cardinality as defined

m-n <
ji=

following steps: in equation 4.

1) features selectiansplit the banknote in seven regionsThe classification decision is taken as follows:
corres.pondlng to security elements (red squares in Fig- « _ | Genuine if D(X,GP) <~
ure 4); o _ Counter feit otherwise

2) banknote normalizatiarreplace the areas that are differ-
ent from one banknote to another, like serial numbers, V. ReESULTS
by black color (orange squares in Figure 4); In order to obtain a robust discrimination of the two

3) partitioning: each considered region and the normalizeglasses one needs to find the b@sparameter forFH D
banknote is partitioned im x n partitions; and also the right partitioning schema, andn. Valuesg =

4) color histogram compute the 4096 bins color histogran®), 0.001,0.002, ...,0.03,0.04,...0.4 andm x n partitioning
for each partition. The following formula is used tofor m =1,2,3,4andn = 1...10 were used and for af and

transform the RGB space in a 4096 bins space: mxn partitioning the distances between the genuine descriptor
and the test data, genuine and counterfeit were computed.

Index — {EJ X 256 + {QJ ¥ 16 + {EJ For each class, genuine and counterfeit, the mini-

16 16 16 mum, mean, standard deviation, maximum of the distances

Dr(X,GP) are computed and the valugs m, n for which
fle distance between the genuine class mean and counterfeit
class mean was the highest are selected.

In words, the attributes of a banknote consist from the col
histogram of the partitions for the seven regions (red megio
from Figure 4) plus the histograms for partitions of the enti
normalized banknote, Figure 5. Margin = Meangenuine — Meancounter feit



TABLE |
THE MARGIN IN DECREASING ORDER FOR DIFFERENT VALUES OB AND

o
m X n PARTITIONING. z:
w0 S
75 o
Genuine Counterfeit o ©
m n 6 Min Mean o Max Min Mean o Max Margin 22 g
1 1T | 0002 | 1650 | 27.12 | 941 | 51.88 | 5888 | 7240 | 471 | 7563 2527 | s
1 1 | ooo1 | 3362 | 4399 | 958 | 67.13 | 77.25 | 8821 | 403 | 9188 4422 | E w0
1 2 | 0002 | 1794 | 2785 | 911 | 5250 | 59.81 | 7182 | 429 | 7475 4396 |6 §
1 2 | 0001 | 3406 | 4450 | 909 | 67.00 | 7700 | 8843 | 424 | 92.26 43.92 s B
2 1 | o002 | 1831 | 27.88 | 892 | 51.81 | 6031 | 7117 | 388 | 74.07 43.29 %0 g
2 1 | o001 | 3444 | 4472 | 901 | 67.00 | 77.69 | 87.45 | 367 | 90.82 42.73 it G
3 1 | ooo1 | 3487 | 4492 | 873 | 67.38 | 7800 | 87.24 | 3.70 | 90.76 42.31 5 o
3 1 | 0002 | 1954 | 2821 | 851 | 51.29 | 60.96 | 7051 | 358 | 7359 42.29 1 %e
1 3 | 0001 | 3392 | 4398 | 854 | 6534 | 7621 | 8599 | 371 | 8955 42,01 : G
2 2 | 0001 | 3512 | 4530 | 847 | 67.13 | 7685 | 86.89 | 3.84 | 90.69 41.59 o
1 3 | 0002 | 1854 | 2761 | 822 | 4963 | 5875 | 69.20 | 379 | 72.88 41.59
2 2 | 0002 | 1947 | 2869 | 841 | 5147 | 5931 | 70.07 | 3.90 | 72.94 41.38 0s )
T T | 0003 | 9876 | 1907 | 840 | 4213 | 4813 | 6037 | 434 | 6425 2129 Trueposiive o4 — o7 o8
4 1 0.001 | 3528 | 4528 | 838 | 66.60 | 78.00 86.35 | 3.46 | 89.88 41.07 False Positive
1 4 | 0001 | 3537 | 4451 | 800 | 6444 | 7600 | 8541 | 369 | 8891 40.89 o o
Fig. 8. ROC curve fory =1...100, 8 = 0.002 and2 x 2 partitioning

Maximum Margin

0.002 0.003 0.004 0.005
Beta

Fig. 7. Top 10 margin for differens andm x n partitioning

position information (not only color information) is inded.

VI. CONCLUSIONS

The system performed well being able to completely dis-
criminate between the genuine and counterfeit examples Al
is easy to update when new banknotes are introduced in cir-
culation, more genuine example are provided or new security
features (feature space) are included in the system.

It can be concluded that'H D proved to have a good
selectivity power, being able to distinguish between very
similar objects. Changing the values of the paramgtérads
to adapting the sensitivity o' HD to the specifics of the
application.

Further studies would be needed to extend the training data
set using more examples as well as other features such as
magnetic image. Also in this study only the defuzzificatién o
FHD is used in order to compute the dissimilarity between

In words, theMargin shows how far apart the genuine anghe test data and the genuine prototype. Further studiegdsho

counterfeit classes are, if each class is described by tR@m&se 1 D directly as a fuzzy set without any defuzzification.
It is used to find the minimum threshold for the distance to

genuine class descriptor to completely recognize the genui

class.

The results are shown in Table | and Figure 7.

To avoid overfitting, the highest values féym, n that yield
an acceptable margin are select8d= 0.002 andm = n = 2.
For these values the upper bound for the distance between
test data and the genuine class descriptoy is 58. In this
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