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Abstract— Banknote validation systems are used to discrimi-
nate between genuine and counterfeit banknotes. The paper pro-
pose a one-class classifier for genuine class using a new similarity
measure, Fuzzy Hamming Distance. For each banknote several
regions are considered ( corresponding to security features) and
each region is split in m � n partitions, to include position
information. The feature space used by the classifier consists
from color histograms of each partition. The Fuzzy Hamming
Distance proves to have a good discrimination power being able
to completely discriminate between the genuine and counterfeit
banknotes.

I. I NTRODUCTION

Automatic banknote handling is a huge industry including
ATMs, banks or vending machines. The key element of auto-
matic banknote handling is the banknote validation system.A
banknote validation system check whether the input banknote
is genuine or a counterfeit. The input banknote is scanned
using different sensors varying from optical scan to magnetic
scan. Then the acquired attributes are compared with the
templates for each banknote type. If a match is found then
the banknote is genuine, otherwise is considered counterfeit.

This problem can be seen as one-class classification because
the number of counterfeit examples available is very small.
Also it is required that the genuine class is learned very
well. This is the approach in Girolami’s work [1], where
each banknote is divided intom � n regions. An individual
classifier is built for each region, then classifiers are combined
to provide an overall decision. To find the best values form andn a genetic algorithm is used. This approach assures
that the system will work with any banknote,i.e. no banknote
specific information is used.

Even though this approach simplifies the update of the
system, by not using expert knowledge for setting the system,
it ignores valuable information regarding security features that
are banknote specific.

In the previouse studies, [2], [3], [4], Fuzzy Hamming Dis-
tance proved to be efficient in a Content Based Image Retrieval
system, that output the closest images in the database given
a quey image. The study proposed in this paper investigates
further the discrimination power ofFHD in the case where
the compared objects are very similar, genuie and counterfeit
banknote, unlike the CBIR case where the compared objects
are just close.

The Fuzzy Hamming Distance based approach, proposed
here, combines the versatility of an automatic system with

basic banknote specific information. Subsequently, the system
can be updated to use in-depth security features provided by
an expert.

II. FUZZY HAMMING DISTANCE

A. Introduction

The Fuzzy Hamming Distance is a generalization of Ham-
ming distance over the set of real-valued vectors. It preserves
the original meaning of the Hamming distance as the number
of different components between the input vectors with the
added features that it uses real-valued vectors and it takesin
account the amount of the difference between each component.
FHD is the (fuzzy) number of different components of the
input vectors. The fuzzy set shows the degree to which the
input vectors are different by0, 1,...,n, wheren is the size of
the vectors. In short, the Fuzzy Hamming Distance is the fuzzy
cardinality of the difference fuzzy set. Therefore, in order to
define it, one needs to define in order the concepts ofdegree
of the differencebetween two real values,difference fuzzy set
and make use of the concepts ofcardinality of a fuzzy setand
defuzzification of a fuzzy set.

B. Degree of Difference

Definition 1: (Degree of difference [5]): Given the real
valuesx and y, the degree of difference betweenx and y,
modulated by� > 0, denoted byd�(x; y), is defined as:d�(x; y) = 1� e��(x�y)2 (1)
The parameter� � 0 modulatesthe degree of difference in
the sense that for the same value ofjx � yj, different values
of � will result in different values ofd�(x; y).
C. Difference Fuzzy Set

Using the notion ofdegree of differencedefined above,
the difference fuzzy setD�(x; y) for two vectorsx and y,
is defined as:

Definition 2: (Difference fuzzy set for two vectors [5]):
Let x and y be two n-dimensional real vectors, and letxi,yi denote their correspondingith component. The degree of
difference betweenx andy along the componenti, modulated
by the parameter�, is d�(xi; yi).

The difference fuzzy set corresponding tod�(xi; yi) isD�(x; y) with membership function



�D�(x;y) : f1; : : : ; ng ! [0; 1℄ given by equation 2:�D�(x;y)(i) = d�(xi; yi) (2)
In words,�D�(x;y)(i) is the degree to which the vectorsx

andy are different along theirith component. The properties
of �D�(x;y) are determined from the properties ofd�(xi; yi)
[5].

D. Cardinality of a fuzzy set and Crisp Cardinality

Of subsequent use in this study is the notion ofcardinality
of a fuzzy set. This concept has been studied by several authors
starting with [6], and continuing with [7], [8], [9], etc. Here
the definition put forward in [8] and further developed in [9]
is used.

Definition 3: (Cardinality of a fuzzy set [8]):LetA � nXi=1 xi=�i
denote the discrete fuzzy setA over the universe of discoursefx1; : : : ; xng where �i = �A(xi) denotes thedegree of
membership forxi to A. The cardinality,CardA, of A is
a fuzzy set CardA � nXi=0 i=�CardA(i)
where �CardA(i) = �(i) ^ (1� �(i+1)) (3)
where �(i) denotes theith largest value of�i, the values�(0) = 1 and�(n+1) = 0 are introduced for convenience, and^ denotes themin operation.

For the defuzzification of the fuzzy cardinality of a fuzzy
setA, the non-fuzzy cardinalitynCard(A), introduced in [9]
is the only one which guarantees that the result is a whole
number, and therefore satisfies its semantics,”the number of
...” . Starting from a set of requirements onnCard(A), it is
shown in [9], thatnCard(A) is equal to the cardinality (in
classical sense) ofA0:5 the �-level set ofA with � = 0:5.
More precisely,nCard(A) � jfx;�A(x) > 0:5gj (4)

where for a setS, S denotes the closure ofS.

E. The Fuzzy Hamming Distance

By analogy with the definition of the classical Hamming
distance, and using the cardinality of a fuzzy set [10], [6],
[7], the Fuzzy Hamming Distance (FHD) is now defined as:

Definition 4: (The Fuzzy Hamming Distance) [5]Given
two n dimensional real-valued vectors,x and y, for which
the difference fuzzy setD�(x; y), with membership function�D�(x;y) defined in (2), thefuzzy Hamming distancebetweenx andy, denoted byFHD�(x; y) is the fuzzy cardinality of
the difference fuzzy set,D�(x; y):

�FHD(x;y)( � �) : f0; : : : ; ng ! [0; 1℄ denotes the member-
ship function forFHD�(x; y) corresponding to the parameter�. More precisely,�FHD(x;y)(k;�) = �CardD�(x;y)(k) (5)

for k 2 f0; : : : ; ng wheren = jSupportD�(x; y)j.
In words, (5) means that for a given valuek,�FHD(x;y)(k;�) is the degree to which the vectorsx and y

are different on exactlyk components (with the modulation
constant�).

Example 1:Consider two vectorsx andy with jx � yj =(2; 1; 4; 3; 5). Their FHD is the same as that between the
vector, 0 and jx � yj = (2; 1; 4; 3; 5) (by Property (4) ofd�(x; y)). Therefore, theFHD betweenx and y is the
cardinality of the fuzzy setD(jx � yj; 0) � 1=0:9817 +2=0:6321+ 3=1 + 4=0:9999+ 5=1 obtained according to (3).

For � = 1 this is obtained to beFHD � 0=0 + 1=0 +2=0:0001 + 3=0:0183 + 4=0:3679 + 5=0:6321. In words, the
meaning ofFHD is as follows: the degree to whichx andy differ along exactly0 components (that is, do not differ)
is 0, along exactly one component is0, along exactly two
components is0:00013, along exactly three components is0:0183, and so on. The difference fuzzy set and the fuzzy
Hamming distance for this example are shown in Figures 1
and 2 respectively.
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Fig. 1. The difference fuzzy set for the data in Example 1.

The properties of the Fuzzy Hamming Distance follows
from its definition as cardinality of a fuzzy set and are
summarized in the following proposition:

Proposition 2.1: In the following,x; y; z are real-valuedn-
dimensional vectors, and� 2 < andnFHD is the defuzzifi-
cation ofFHD usingnCard according to equation 4.

1) �FHD(x;y)(k;�) � 0, 8 k = 0; : : : ; n+ 1;
2) If �FHD(x;y)(k;�) = 1 then�FHD(x;y)(j;�) = � 1 if j = 0; : : : ; k0 if j = k + 1; : : : ; n
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Fig. 2. FHD for the data in Example 1 with the difference fuzzyset shown
in Figure 2.

3) �FHD(x;x)(0;�) = 1 and�FHD(x;x)(k;�) = 0, 8 k =1; : : : ; n;
4) �FHD(x;y)(0;�) = 1 () x � y;
5) �FHD(x;y)(k;�) = �FHD(y;x)(k;�), 8 k = 0; : : : ; n;
6) For any� 2 <, there exists at least one permutationx; y; z such thatnFHD�(x; y) � nFHD�(x; z) + nFHD�(y; z)

wherenFHD�(�; �) correspondsFHD�;�(�; �);
7) For anyx; y; z there exist�1; �2; �3 such thatnFHD�1(x; y) � nFHD�2(x; z) + nFHD�3(y; z)
8) There exists�, such that for binary vectors, thenCard

defuzzification of the Fuzzy Hamming Distance coin-
cides with the classical Hamming Distance(HD) between
these vectors, that is,nCardFHD(x; y) = HD(x; y)

F. Adapting Fuzzy Hamming Distance

The Fuzzy Hamming Distance can be adapted to include a
scaling factor and threshold for the amount of the difference
necessary for the difference to be considered as a change.
Let xi andyi are theith component of the vectorsx and y,xi; yi 2 [ai; bi℄. The length of the domain forxi and yi isLi = bi � ai

One way to set the value for� is to impose a lower bound
on the membership function subject to constraints on the
difference between vector components, such as described in
(6) and (7). �D�(x;y)(i) � d�(xi; yi) > 1� � (6)

subject to jxi � yij > M (7)
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Fig. 3. nFHD(0:5; x) wherex in[0; 1℄ for different �
where (xi; yi) is a generic component pair,1 � � a desired
lower bound on the membership value toFHD (as defined
in (5)), andM some positive constant. In particular,M can
be set asM = �Li where� 2 [0; 1℄ , which leads to1� e��i(xi�yi)2 > 1� �
from which it follows that�i > 1(xi � yi)2 ln1� (8)

This leads to the following formula for defining the value for
the parameter� along theith component:�i = ln 1�L2i 1�2 (9)

whereLi and � have the meaning stated above.� can be
viewed as the percentage fromLi that is considered as a
change for that column.
For example, for� = 0:1 (10%),Li = 255 and � = 0:5, if
the difference between compared components of the vectors is
greater then25:5 then the degree of change will be greater than1� � = 0:5, and therefore it will be counted in defuzzification
of FHD.

For� = 0 if xi 6= yi the degree of the difference is 1. Since� can be different for each column,FHD sensitivity can be
controlled differently for each column (feature).

Figure 3 shows the nFHD between the point[0:5℄ and the
points in the interval[0; 1℄ for different� 2 [0; 0:5℄.

III. T HE DATASET

The dataset used is generated by scanning one dollar bills
using 600 dpi resolution, as follows:� For genuine banknotes:

– 10 scans of the same banknote;
– one scan of 10 different banknotes;� For counterfeit banknotes:
– 10 prints and scans of $1 banknote;
– one scan of $5,$10,$20,$50,$100 banknote;



Fig. 4. Banknote Partitions

Fig. 5. Normalized Banknote

IV. SYSTEM DESCRIPTION

The system consists from three modules:

1) Feature Extraction;
2) Training;
3) Classification;

A. Feature Extraction

The feature space used in this study, consists from color
histograms but it can be extended to any available space, like
the magnetic signature.

The attributes for each banknote are computed in the
following steps:

1) features selection: split the banknote in seven regions,
corresponding to security elements (red squares in Fig-
ure 4);

2) banknote normalization: replace the areas that are differ-
ent from one banknote to another, like serial numbers,
by black color (orange squares in Figure 4);

3) partitioning: each considered region and the normalized
banknote is partitioned inm� n partitions;

4) color histogram: compute the 4096 bins color histogram
for each partition. The following formula is used to
transform the RGB space in a 4096 bins space:Index = � R16�� 256 + � G16�� 16 + �B16�

In words, the attributes of a banknote consist from the color
histogram of the partitions for the seven regions (red regions
from Figure 4) plus the histograms for partitions of the entire
normalized banknote, Figure 5.
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Fig. 6. One of the 32 average color histograms of the normalized banknote,
using a2� 2 partitioning

B. Training

The goal of our system is to recognize well one class, the
genuine banknotes. Genuine examples are used to train the
classifier by computing the the average histograms of each
partition on each region. The genuine class prototype (GP )
consists from8 �m � n average color histograms. Figure 6
shows one of the histograms.

C. Classification

Classification is done based on a threshold classifier us-
ing the Fuzzy Hamming Distance.nFHD between the test
banknote and the genuine class descriptor is computed and if
the distance is less then a certain threshold
 is considered
genuine, otherwise is considered counterfeit.D(X;GP ) = 1N NXi=1( 1m � n m�nXj=1 nFHD(Xij ; GPij))
whereXij is the color histogram ofith region andjth partition
of the test item,N is the number of regions andnFHD is
the defuzzification ofFHD using crisp cardinality as defined
in equation 4.
The classification decision is taken as follows:X = � Genuine if D(X;GP ) < 
Counterfeit otherwise

V. RESULTS

In order to obtain a robust discrimination of the two
classes one needs to find the best� parameter forFHD
and also the right partitioning scheme,m andn. Values� =0; 0:001; 0:002; : : : ; 0:03; 0:04; : : :0:4 andm � n partitioning
for m = 1; 2; 3; 4 andn = 1 : : : 10 were used and for all� andm�n partitioning the distances between the genuine descriptor
and the test data, genuine and counterfeit were computed.

For each class, genuine and counterfeit, the mini-
mum, mean, standard deviation, maximum of the distancesD(X;GP ) are computed and the values�, m, n for which
the distance between the genuine class mean and counterfeit
class mean was the highest are selected.Margin = MeanGenuine �MeanCounterfeit



TABLE I

THE MARGIN IN DECREASING ORDER FOR DIFFERENT VALUES OF� ANDm� n PARTITIONING.

Genuine Counterfeitm n � Min Mean � Max Min Mean � Max Margin
1 1 0.002 16.50 27.12 9.41 51.88 58.88 72.40 4.71 75.63 45.27
1 1 0.001 33.62 43.99 9.58 67.13 77.25 88.21 4.03 91.88 44.22
1 2 0.002 17.94 27.85 9.11 52.50 59.81 71.82 4.29 74.75 43.96
1 2 0.001 34.06 44.50 9.09 67.00 77.00 88.43 4.24 92.26 43.92
2 1 0.002 18.31 27.88 8.92 51.81 60.31 71.17 3.88 74.07 43.29
2 1 0.001 34.44 44.72 9.01 67.00 77.69 87.45 3.67 90.82 42.73
3 1 0.001 34.87 44.92 8.73 67.38 78.00 87.24 3.70 90.76 42.31
3 1 0.002 19.54 28.21 8.51 51.29 60.96 70.51 3.58 73.59 42.29
1 3 0.001 33.92 43.98 8.54 65.34 76.21 85.99 3.71 89.55 42.01
2 2 0.001 35.12 45.30 8.47 67.13 76.85 86.89 3.84 90.69 41.59
1 3 0.002 18.54 27.61 8.22 49.63 58.75 69.20 3.79 72.88 41.59

2 2 0.002 19.47 28.69 8.41 51.47 59.31 70.07 3.90 72.94 41.38
1 1 0.003 9.876 19.07 8.40 42.13 48.13 60.37 4.34 64.25 41.29
4 1 0.001 35.28 45.28 8.38 66.60 78.00 86.35 3.46 89.88 41.07
1 4 0.001 35.37 44.51 8.00 64.44 76.00 85.41 3.69 88.91 40.89
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Fig. 7. Top 10 margin for different� andm� n partitioning

In words, theMargin shows how far apart the genuine and
counterfeit classes are, if each class is described by the mean.
It is used to find the minimum threshold for the distance to
genuine class descriptor to completely recognize the genuine
class.

The results are shown in Table I and Figure 7.
To avoid overfitting, the highest values for�, m, n that yield

an acceptable margin are selected:� = 0:002 andm = n = 2.
For these values the upper bound for the distance between the
test data and the genuine class descriptor is
 = 58. In this
case the probability for a genuine banknote to be classified
as genuine isP (0 < x < 58) = 0:999431, considering the
normal distribution with mean=28:69 and� = 8:41.

It can be seen from the Table I that a good separation
between genuine and counterfeit class for all15 combination
of � and partitioning is obtained. The minimum value of
counterfeit class is always greater than the maximum value
of the genuine class. Also for a threshold
, between those
two values the probability for a genuine class to be classified
as genuine equals 1.

Also from the ROC curve in Figure 8, it follows that a
complete discrimination for
 2 [52; 60℄ is obtained; higher
values form andn are more desirable because this way more
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Fig. 8. ROC curve for
 = 1 : : : 100, � = 0:002 and2� 2 partitioning

position information (not only color information) is included.

VI. CONCLUSIONS

The system performed well being able to completely dis-
criminate between the genuine and counterfeit examples. Also
is easy to update when new banknotes are introduced in cir-
culation, more genuine example are provided or new security
features (feature space) are included in the system.

It can be concluded thatFHD proved to have a good
selectivity power, being able to distinguish between very
similar objects. Changing the values of the parameter� leads
to adapting the sensitivity ofFHD to the specifics of the
application.

Further studies would be needed to extend the training data
set using more examples as well as other features such as
magnetic image. Also in this study only the defuzzification ofFHD is used in order to compute the dissimilarity between
the test data and the genuine prototype. Further studies should
useFHD directly as a fuzzy set without any defuzzification.
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