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Abstract— Fuzzy Hamming Distance is successfully used in a
Content-Based Image Retrieval (CBIR) system as a similarity
measure. The system performs am × n partitioning of the
compared images and for each partitions pairs evaluates FHD. In
the last step the FHD are defuzzified and the results are combined
in a final score. In order to take full advantage of the use of fuzzy
sets, the current study investigates the possibility of reversing
the order of the defuzzification and aggregation steps: aggregate
fuzzy set and defuzzify final result for ranking. Severalt-norm
and associatedt-conorm aggregation operators are experimented
with. The results are illustrated on retrieval operations from an
image database.
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I. I NTRODUCTION

The goal of content based image retrieval systems(CBIR) is
to allow querying images databases in a natural way, by the
image content. To achieve this goal, various features such as
sketches, layout or structural description, texture, colors, are
extracted from each image. A query might be:Find all images
with a pattern similar to this one(the query pattern), and then
the system finds a subset of images similar to the query image.
QBIC, Query By Image Content, from IBM [1], is one of the
earliest such a system, using a weighted Euclidean distanceon
colors, texture, shape and sketch to assess similarity between
two images.

In previous studies, [2], [3], [4], the Fuzzy Hamming
Distance (FHD) has been used to assess content similarity
between two images based on color information. In such an
approach aggregation is expected to play an important role
towards obtaining a final score of similarity.

II. T HE FUZZY HAMMING DISTANCE

The Fuzzy Hamming Distance [5] is a generalization of
Hamming distance over the set of real-valued vectors defined
as the (fuzzy) number of different components of the input
vectors, captured by thedifference fuzzy set. The fuzzy set
shows the degree to which the input vectors are different
by 0, 1,...,n, where n is the size of the vectors. In short,
the Fuzzy Hamming Distance is thefuzzy cardinalityof the
difference fuzzy set. A crisp version of it,nFHD, can be also
defined, which, when the input vectors are binary, reduces
to the classical Hamming distance. Moreover, FHD can be

parameterized to control the extent, context dependent, of
the difference, in order for this to be considered meaningful.
Previous studies [5], [2], show that FHD can be viewed as an
adaptive decomposition of the Euclidean (and other distances,
such as Minkowski distance).

III. OVERVIEW OF THE CONTENT BASED IMAGE

RETRIEVAL SYSTEM

The CBIR system proposed in [2], [4] and further studied
in [3], consists of the three modules as shown in Fig. 1:

1) The Preprocessing Modulesplits each image (query
image and every image in database) into partitions of
granularitym×n, to include position information; from
each partition it extracts the information of interest
(in this study the color histograms). The output is a
collection of color histograms, one for each partition,
stored as real-valued vectors.

2) The Similarity Assessment Moduletakes as input the
information from the preprocessing module and com-
putes the similarity (actually the FHD), between the
query image and each image in the database. The output
of this module is a collection of fuzzy sets (FHD).

3) The Ranking Module defuzzifies the input (FHD of
each partition), aggregates the results into a score (e.g.
using a weighted sum), ranks the scores in decreasing
order.

The current study investigates the possibility of reversing the
order of the defuzzification and ranking steps. The motivation
behind this is as follows: since defuzzification of a fuzzy
set consists of extracting a (representative) point from it, its
result is necessarily an approximation (of the original set).
Additionally, in the context of the current CBIR system,
where defuzzification is followed by aggregation of scores,
the number of defuzzification operations is equal tom × n
(partition granularity) and therefore such approximations may,
ultimately, impact the outcome of the system. Reversing the
order of aggregation and defuzzification steps would result
then in one aggregation step - this time of fuzzy sets, rather
than crisp numeric scores - andone defuzzification operation
- to obtain the final score.

Only t-norms andt-conorms operators are used to aggregate
the fuzzy sets; other aggregation operators are omitted forrea-



Fig. 1. The CBR system architecture.



TABLE I

t-NORMS AND ASSOCIATEDt-CONORMS USED IN EXPERIMENTS(∧ AND ∨

DENOTE THE OPERATIONS OFmin/max RESPECTIVELY).

Name t-norm t-conorm
min/max tmin(a, b) = a ∧ b smax(a, b) = a ∨ b

Lukasiewicz tL(a, b) = 0 ∨ (a + b − 1) sL(a, b) = 1 ∧ (a + b)
algebraic talg(a, b) = ab salg(a, b) = a + b − ab

sons to be clarified later. It is expected that system sensitivity
to the similarity between images is enhanced.

IV. PRELIMINARY EVALUATION OF AGGREGATION

OPERATORS

Triangular t-norms, t : [0, 1] × [0, 1] → [0, 1], constitute
a class of aggregations of fuzzy sets for implementing inter-
section of two fuzzy sets. Thet-conorm corresponding to a
t-norm,s : [0, 1]× [0, 1] → [0, 1], s(a, b) = 1− t(1−a, 1− b))
implements a union operator. Table IV shows the operators
used for the experiments carried out in the current study. The
subject oft-norms is well understood and extensively covered
in the literature (see, for example [6]).

All t-norms andt-conorms satisfy the properties:

t(a, b) ≤ a ∧ b; s(a, b) ≥ a ∨ b (1)
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Fig. 2. Agebraict-norm talg(a, b)

As indicated in the previous section, in the current ex-
periments, the results of theSimilarity Module are first
aggregated to produce one fuzzy set, and then, for ranking
purposes this fuzzy set is defuzzified.

Thus theRanking Module has now the following two steps:

1) Aggregate the input fuzzy sets.
2) Defuzzify the resulting fuzzy set: For this study, for

the preliminary results, the center of gravity (COG)
is considered. Recall that for a discrete fuzzy set
A ≡

∑n

i=1
xi/µi COG is given by COG =∑n

i=1 xiµi /
∑n

i=1 µi.
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Fig. 3. Max t-conormsmax(a, b)

Two options present themselves for aggregation, leading to
the following scenarios:

• Scenario 1 (S1): Aggregate the difference fuzzy sets and
then compute fuzzy cardinality of the result to obtain the
overall FHD (Fig. 4);

• Scenario 2 (S2): Computem×n FHDs (fuzzy cardinality
of the difference fuzzy sets) and aggregate them into the
overall FHD (Fig. 5).

A. Selection oft-norms andt-conorms

As already noted, at-norm is a generalization of an AND
operator. To understand the effect of this aggregation in the
context of the CBIR system, consider the two scenarios,S1, S2

described above:

• In S1, let D = {µij , | i = 1, . . . ,m; j = 1, . . . , n} be
the difference fuzzy sets for two images, each partitioned
with granularity m × n, P = (Pij)i=1,...,m;j=1,...,n.
Then, the overall difference, obtained using at-norm,
t(µ11, . . . , µmn) is the fuzzy set of difference “along
P11 andP12 and . . . andPmn”. Equation (1) implies that
in order for t(µ11, . . . , µmn) to contribute to the overall
FHD, that is, to be large enough,µij , for all i, j must be
large enough.

• Likewise, inS2, where the problem is to aggregate FHDs,
again, from (1) it follows that the overall degrees of the
resulting fuzzy set will be at most equal to those being
aggregated, and this will be reflected in the subsequent
defuzzification step.

To summarize, when at-norm is used for aggregation, the
result is that for a color to be considered as changed from
one image to another, the change must be inall partition
cells. This is a strict aggregation which will determine a lower
degree of change, which subsequently translates in a lower
discrimination ability.



A similar discussion holds in connection with the use of
a t-conorm operator, except that in this case, for a color to
be considered as changed from one image to another, it is
sufficient for the change to occur inat least one cellof the
partition.

Aggregation operators different fromt-norms/conorms fall
between these and therefore in this context they do not seem
useful.

V. RESULTS

The dataset used for this study comes from University of
Washington [7]. It consists of 855 jpeg images grouped into
19 categories based on what their content (e.g.Arborgreens,
Barcelona, Italy ...). For test purpose six images are randomly
chosen from different categories. The CBIR system uses a
2 × 2 partitioning of each image. Testing is executed in the
following steps:

1) For each image the query result set is evaluated using
the two scenarios,S1 andS2, to compute the final score
(as shown in Figures 4, and 5.

2) For each scenario, evaluate thecategory agreementfor
the first20 images in the result set. Category agreement
shows how many images, out of20, are in the same
category with the query image. In general, for any CBIR
system, the relevance of the result set varies according
to the individual user. However, a measure likecategory
agreementallows an objective evaluation of the result
set.

The results are compared with those obtained without
aggregation, withFHDCOG and with Euclidean distance, and
are shown in Table II, which should be read as follows:

• Columns 2 and 3 display the results without aggregation,
using 1 × 1 and 2 × 2 partitioning. For each image two
rows are listed: first sub-row is the COG defuzzification
result; the second sub-row is the result obtained with the
Euclidean distance;

• The remaining columns show the results obtained using
different operators. For each test image two rows are
listed: first sub-row corresponds to the first scenario(S1)
described in Fig. 4; the second sub-row corresponds to
scenario 2 (S2) described in Fig. 5.

For each image the best result is highlighted in bold type.
Based on these limited experiments, the following conclusions
can be drawn from the Table II:

• With respect to aggregation versus no aggregation, al-
though the results obtained with and without aggregation
are different, there seem to be consistency between their
magnitudes. The output images are similar in both cases.

• It can be seen that for three out of the six images tested,
the best results were obtained usingFHDCOG and no
aggregation. For each of these images, the next best
results, using aggregation were close to the best results:
For image 757, best result without aggregation is 0.95,
with aggregation it is 0.8, for image 626, best result
without aggregation is 0.8, with aggregation 0.6, and

for image 664, best with aggregation is 1, and without
aggregation is 0.9.

• For the remaining three images, best results were obtained
using aggregation. Although it seems that the algebraic
t-norm and maximumt-conorm yield the best results, the
values are too close to be concluded as significant.

It can be concluded that use of aggregation operators before
deufzzification while speeding up the step of calculating simi-
larity index does not seriously affect the output of the system.
Future studies will evaluate other aggregation operators and
ranking directly on fuzzy sets, avoiding defuzzification.
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Fig. 6. Results without aggregation, using FHD and Euclidean distance (ED)
for 2 × 2 and1 × 1 partitioning.
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Fig. 4. Scenario 1. The aggregation is applied to the difference fuzzy sets and then FHD is computed.

Fig. 5. Scenario 2. First evaluate FHD for each partition andthen apply aggregation.

TABLE II

CATEGORY AGREEMENT OF THE RESULT SET FOR DIFFERENT AGGREGATION OPERATORS IN TWO SCENARIOS.

Img
COG/ED Sce-

narios
Aggregation operators

1 × 1 2 × 2 smax tmin tL talg sL salg

788 0.85 0.8 S1 0.85 0.25 0.8 0.85 0.8 0.85
0.35 0.25 S2 0.55 0.6 0.2 0.15 0.9 0.5

757 1 0.95 S1 0.75 0.4 0.8 0.75 0.8 0.75

0.7 0.7 S2 0.55 0.8 0.2 0.25 0.1 0.75

626 0.7 0.8 S1 0.55 0.55 0.5 0.6 0.5 0.6

0.4 0.25 S2 0.5 0.35 0.15 0.2 0.2 0.35

816 0.15 0.25 S1 0.15 0.2 0.15 0.15 0.15 0.15

0.45 0.2 S2 0.15 0.2 0.35 0.25 0.25 0.15

664 0.95 1 S1 0.9 0.95 0.9 0.85 0.9 0.85

0.65 0.65 S2 0.7 0.8 0.2 0.25 0.05 0.9

627 0.3 0.3 S1 0.25 0.2 0.3 0.4 0.3 0.4
0.15 0.15 S2 0.2 0.15 0.15 0.15 0.1 0.15



Fig. 7. Results using the aggregation operators on the difference fuzzy sets as shown in Fig. 4, for2 × 2 partitioning.

Fig. 8. Results using the aggregation operators on FHD fuzzysets as shown in Fig. 5, for2 × 2 partitioning.


