Pattern Discovery in Distributed Databases

Raj Bhatnagar, Sriram Srinivasan
ECECS Department, University of Cincinnati
Cincinnati, OH 45221
Raj.Bhatnagar@uc.edu

Abstract

Most algorithms for learning and pattern discovery in
data assume that all the needed data is available on
one computer at a single site. This assumption does
not hold in situations where a number of independent
databases reside on geographically distributed nodes
of a computer network. These databases cannot be
moved to a single site due to size, security, privacy
and data-ownership concerns but all of them together
constitute the dataset in which patterns must be dis-
covered. Some pattern discovery algorithms can be
adapted to such situations and some others become in-
efficient or inapplicable. In this paper we show how a
decision-tree induction algorithm may be adapted for
distributed data situations. We also discuss some gen-
eral issues relating to the adaptability of other pattern
discovery algorithms to distributed data situations’.

Introduction

Most learning and pattern discovery algorithms have
been designed for environments in which all relevant
data is available at one computer site. Increasingly,
pattern discovery tasks are encountering situations in
which the relevant data exists in the form of a number
of databases that are geographically distributed but
are connected by communication networks. A com-
mon constraint in these situations is that the databases
cannot be moved to other sites due to size, security,
privacy or data-ownership concerns. In this paper we
examine adaptability of various pattern discovery algo-
rithms for such sets of databases. We present details
of a decision-tree induction algorithm’s adaptation for
the case of distributed set of databases.

Summary of Relevant Research

Learning from databases is a widely investigated field
and decision-tree induction is a very well known and
well researched topic (Ming 89a; Ming 89b; Brei 84;
Quin 86). Algorithms that use information as a heuris-
tic for guiding towards smaller decision-trees are dis-
cussed in (Brei 84; Quin 86). A number of heuristics

!Copyright ©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

to guide the search towards smaller decision trees have
been reviewed in (Ming 89a; Bunt 92). However, all
these algorithms and heuristics assume that the data
from which decision trees are to be induced is available
in the form of a relation on a single computer site.

In the context of database research much work has
been done towards optimization of queries from dis-
tributed databases. Tt was pointed out in (Yu 84) that
a distributed query is composed of the following three
phases: (1) Local Processing Phase in which selection
and projection etc. operations are performed at in-
dividual sites; (ii) Reduction Phase in which reducers
such as semijoins and joins are used to reduce the size
of relations; and (iii) Final Processing Phase in which
all resulting relations are sent to the querying site
where final query processing is performed. However,
discovery of patterns from geographically distributed
databases does not require that the relevant data and
relations be necessarily gathered at the site initiating
the learning task. The learning site is interested in
only the description of the pattern and can do with
only some statistical summaries from the various sites.
In some situations individual sites do not allow any
data to be sent out of the site but permit sending sta-
tistical summaries to some authorized sites. Phases (ii)
and (iii) of distributed query processing are therefore
not needed when our goal is limited only to discovery
of patterns. Databases from which transfer of data is
not allowed can not participate in distributed query-
ing but can still be useful for pattern-discovery tasks
by engaging in an exchange of statistical summaries
only.

Intelligent Query Answering and Data clustering in
large databases have been addressed in (Han 96; Zhang
96) and their treatment also is limited to databases
residing and available at a single computer site.

An Example Situation

An example situation in which distributed databases
with constraints on data transfer are encountered is as
follows. Consider the case of a financial institution that
maintains credit card accounts. A number of databases
used by this institution, that typically reside in differ-

ent cities, are: (i) A database containing fixed data
about customers such as employer and address infor-
mation; (ii) A database of credit card charges and pay-
ments made by the customer; (iii) A database contain-
ing information about vendors that accept the card;
and (iv) A database containing credit-rating informa-
tion about customers.

The above scenario comes with the following con-
straints:

1. The databases or smaller relations extracted from
them cannot be transferred from their home sites
due to security, size, data ownership and privacy
concerns.

2. Each database is designed and maintained indepen-
dently and therefore the databases, collectively, do
not generally constitute a normalized set of relations.
Over time, different databases may become available
and be added to the set from which patterns are
to be discovered and some older databases may be
dropped.

3. Some attributes are repeated in various databases.

4. The databases are write-protected in the sense that
an agent from outside their respective sites is not
permitted to write to a database.

5. The queries permitted to non-local but authorized
agents are those that return statistical summaries
from the databases. No actual data tuples can be
transmitted out of any site.

Similar constraints exist on many commercial, finan-
cial, and defense related databases. Despite these con-
straints it is possible to discover patterns in the collec-
tive dataset and we demonstrate it in this paper.

Formal Description of Problem
A pattern discovery task requires the following:
1. A set of tuples D representing the data.
2. A Pattern discovery algorithm.

Al A2 A3
ala2a3.. a2adar .. a3ara...

d1 @ dn Databases

Agents

Network

o]
—[g e

Figure 1: Databases

The case of distributed databases and their associ-
ated constraints can be represented as shown in Figure-
1. We have n databases located at n different nodes
of a network. We model each database site by a rela-
tion present at that site and Figure-1 shows relation
d; at the i*® site. Each database d; is represented by

an agent C; that obtains summaries from its database
and exchanges them with agents for other databases.
Each agent is capable of initiating and completing a
pattern discovery task by exchanging summaries with
other agents.

The set of attributes contained in relation d; is repre-
sented by A;. Our discussion in this paper is limited to
databases containing nominal valued attributes only.
For any pair of relations d; and d; the corresponding
sets A; and A; may have a set of shared attributes
given by S;;. That is,

Sij = AiﬁAj (1)

The dataset D in which patterns are to be discov-
ered is a subset of that set of tuples which would be
generated by a Join operation performed on all the
relations di...d,. However, the tuples of D cannot
be made explicit at any one site because data from d;s
cannot be transferred to other sites. The tuples of D,
therefore, must remain only implicitly defined. This
inability to make explicit the individual tuples of D
is the most severe limitation of the constrained set of
databases.

To facilitate pattern discovery in the implicitly de-
fined set of tuples of D we define a set S that is the
union of all the intersection sets defined above. That
s,

S=Vij izj Sy (2)
The set S contains all those attributes that occur in
more than one d;. We also define a new relation
Shareds containing all the attributes in set S. The tu-
ples in Shareds are formed by enumerating all possible
combinations of values for attributes in set S.

Pattern Discovery Task

A pattern discovery task for distributed databases can
be performed in one of the following ways:

1. Transfer all relevant relations to a single site and
perform a Join operation to create a single relation.
Then run the pattern discovery algorithm using this
single table.

2. Decompose the computations of the pattern discov-

ery algorithm; perform the decomposed parts at in-
dividual database sites; transmit the results back to
the site performing discovery; and then compose the
responses from individual sites to create the result.

For our constrained situation the first option 1s
clearly ruled out. We must devise decompositions of
pattern discovery algorithms such that the results pro-
duced are identical to those that would have been ob-
tained by the first option. The decomposed versions
would have to work as follows:

1. Learning task is initiated at a site called Learner
which can be any one of the n database sites as
shown in Figure-1, or possibly any other authorized
site.

2. Attribute names in all the A; sets, and as a conse-
quence the relation Shareds, are known to the site
initiating the pattern discovery task.

3. The learner site sends requests to various sites for
statistical summaries about their respective d;s.

4. The learner site composes responses from various
sites and constructs the descriptions of discovered
patterns.

To demonstrate the decomposability of pattern dis-
covery algorithms and computations we select a sim-
ple decision-tree induction algorithm and present an
adaptation for all its steps for the case of constrained
distributed databases. We briefly describe some as-
pects of the decision tree-induction algorithm here even
though it is a well known algorithm. We do so to facil-
itate easy reference and comparison with the adapted
version of the algorithm.

Decision-Tree Induction Algorithm

************* < b branches

a=ail a=ai3

a=a3

Figure 2: Building a Decision Tree

Various tree induction algorithms including ID3 and
others (Brei 84; Quin 86) start by considering the com-
plete dataset D belonging at the root of the tree and
then repeating the following steps until all or a large
majority of tuples at each leaf node of the tree belong
to some unique class (Value of the Target- Atiribute).

1. Pick one such dataset at a leaf node a majority of
whose tuples belong to different classes. (By dataset
here we are referring to any set of tuples belonging
to a node of the decision tree.)

2. Select an attribute a; having m distinct values:
aj1,a52...05m-

3. Split D into m distinct partitions such that the k**
partition contains only those tuples for which a; =
a5 -

4. The m distinct partitions are added to the tree
as child datasets of the partitioned parent dataset.

These child nodes reside at the end of m branches
emanating from the parent node.

Figure-2 shows how the above steps are repeated to
construct the tree. It is desirable to keep the height of

the tree as small as possible. A heuristic that is used
to keep the height of the tree on the smaller side selects
that attribute a; in Step-2 which minimizes the average
informational entropy of the partitions formed in step-
3. The value of this average entropy is computed as:

P=y
b=1

where Nj is the number of tuples in branch b, N; is the
total number of tuples in all branches, ¢ is the number
of possible classes (the values the target attribute can
possess), and Ny, is the number of tuples in branch b
belonging to class c¢. The attribute that minimizes the
average entropy for the resulting partitions is chosen.

Adaptation for Implicit Tuple Space

The tree induction algorithm described in the above
section requires an explicit set of tuples at each node
of the tree. This set is used for the following:

1. Computation of entropy after partitioning a dataset.

2. Testing to determine if all tuples in a dataset belong
to the same class.

In case of the constrained distributed databases an ex-
plicitly stated set of tuples is not available. Each step
of the induction algorithm must adapt itself to work
with the implicitly specified set of tuples. In the fol-
lowing section we consider various aspects of the tree
induction algorithm and present the version adapted
for the implicit set of tuples.

Characterization of a set of tuples: When a
dataset is known explicitly it can be stored as a ta-
ble in computer memory. After repeated partitionings,
smaller datasets belonging to leaf nodes of the tree can
be represented by storing a partition identity number
along with each tuple in an additional column of the
relation.

When the dataset is only implicitly specified there
does not exist any facility to store identities of parti-
tions to which individual tuples belong. Description of
every partition must also be implicit. For the case of
decision trees the conjunction of tests performed along
a path is the implicit description of the dataset at the
end of that path. Clustering and pattern discovery al-
gorithms that rely on marking each tuple with their
cluster-id as they progress will not be able to work in
the constrained environment.

Selecting the Attribute: In step 2 of the algorithm
we choose an attribute and use it to partition the se-
lected parent dataset into its children datasets. The
attribute that minimizes the average informational en-
tropy is considered the most promising one and is se-
lected. The expression for entropy computation re-
quires the values of the following counts from the par-
ent dataset:

1. Nt,

2. one N; for each child branch; and
3. one Ny, for each class for each child branch.

When the tuples are explicitly stated and stored in a
table these counts can easily be obtained. For the case
of implicitly stated set of tuples we have decomposed
the counting process in such a way that each decom-
posed part can be shipped to an individual database
site and the responses composed to reconstruct the
counts. The decomposition for obtaining the count N,
is as follows:

E S STV) (4)

Joz T t=1
where the subscrlpt subl is: [S1 = S1;.,],[52 =
S25,]...,[Sk = Ski,] In this expression

S1,52,...Sk are the k members of set S defined
by expression 2 above; Jg1,Jg2,...Jsr are the num-
bers of possible discrete values that can be as-
signed to attributes S1,52,...Sk respectively; and
St1,S19,...515,, are all the values that can be as-
signed to attribute Su. The value n is the number of
database sites (d;s) to be considered, and (N (d¢)sus1)
is the count in relation d; of those tuples that satisfy
the conditions stated in subscript subl.

It can be seen that the expression for N; is in the
sum-of-products form. Each term in the product is the
count of tuples satisfying condition subi in a d;. The
resulting product produces the number of distinct tu-
ples that would be contributed to the imagined Join of
all d;s for the sharing condition specified by subl. The
relation Shareds contains tuples specifying all the dif-
ferent ways d;s can have shared attribute values. The
summation in the above expression picks up each tuple
of the relation Shareds as value for the subl and sums
up the product terms obtained for each subl.

This expression, therefore, simulates the effect of a
Join operation on all the n sites without enumerating
the tuples. The simulation only computes the count of
tuples that would exist in various partitions of D.

A very desirable aspect of the particular decompo-
sition of N; given above is that each product term
(N (d¢)sup1) can also be easily translated into an SQL
query of the form:

Select count (*) where desired-partition and subl

and shipped to the site containing relation d;. The ex-
pression desired-partition above states the conditions
along the decision tree path leading up to the dataset
being partitioned. For each tuple in relation Shareds
we have to send the above query to each of the n
database sites. The responses can then be multiplied
to obtain a product-value for a tuple, and the product-
values for all the tuples of Shareds can be summed to
obtain the value N;.

The decompositions for the counts N and Np. are
similar to that for N;. The expressions are stated as
follows:

-3 D)) (IBNEINND

Js2 Js1 t=

where the subscrlpt sub2 is: sub2 = [S1 =
S15,1,152 = 525,,]...,[Sk = Sky_,],[B = Bjg]. The
expression for N differs from that for N; by contain-
ing an additional summation over the partitioning at-
tribute B and the corresponding addition to the con-
dition part of the product term.

Ny, = Z Z Z(H (N(d¢)sup3) (6)

Js2 Js1 t=1

where the subscrlpt sub3 is: [S1 = S1;5,],[52 =
52132] ey [Sk’ = Skjsk], [B = BJB], [C = CJC]. The
expression for Ny, differs from that for Ny by contain-
ing an additional summation over the target attribute
C and the corresponding addition to the condition part
of the product term.

The counts N;, Nj, and N, can be composed by
obtaining responses from individual databases in the
manner described above and the the entropy value for
each proposed partitioning can be determined.

Splitting A Dataset: After deciding to partition a
dataset into its children datasets (Step-3) the learning
site needs only maintain the decision tree constructed
so far. At the learning site a marking can be main-
tained for each leaf node indicating whether all its tu-
ples belong to only one or more classes. This can be
determined by examining various Ny, counts at the
time of creating the children datasets.

Handling Exception Tuples: The method de-
scribed above creates an implicit tuple space which is
equivalent to the cross-product obtained from the n ex-
plicitly known relations d;,...,d,. All tuples formed
in this implicit space may not be valid data combina-
tions. Those tuples known to be unacceptable com-
binations can be excluded from consideration by the
above decomposed algorithm as follows. The learning
site maintains a relation called Fzceptions containing
all the attributes of the n datasets. All known unac-
ceptable tuples are stored in this relation. The product
terms in the decompositions for N;, Ny, and Np. can
be modified to discount the matching tuples found in
the relation Fzceptions. That is, the decomposition for
N; would become:

Z ZZ H dt subl Nemcsubl) (7)

Js2 Js1 =1

where Nexcgyp1 18 the number of tuples in relation Fz-
ceptions that match the condition subl.

Complexity

The cost of working with an implicitly specified set
of tuples can be measured in various ways. One cost

model computes the number of messages that must be
exchanged among various sites. Complexity for dis-
tributed query processing in databases has been dis-
cussed in (Wang 96) and the cost model used is total
data transferred for answering a query. In our case the
amount of data transferred in each message is very lit-
tle (statistical summaries etc.) but it is the number
of messages to be exchanged that grows rapidly. We
derive below an expression for the number of messages
that need to be exchanged for dealing with the implicit
et of tuples.

The exchange of messages occurs predominantly for
computing the entropy values. An estimation of the
number of messages exchanged while computing en-
tropy values can be obtained as follows. Let us say:

e There are n relations, d; ...d,, residing at n differ-
ent network sites.

e There are k attributes in set S. Each attribute in
this set appears at more than one site.

e There are m distinct attributes in all the sets
(UP_, A;) combined.

e There are [possible discrete values for each attribute
in set S.

The number of tuples in relation Shareds is (¥ be-
cause it contains all possible combinations of values for
its attributes.

From the previous section we know that each prod-
uct term requires an exchange of n messages between
the learning site learn and the remote sites.

For a dataset at depth level d in the decision tree
we need to compute m — d entropy values for selecting
the most promising attribute. This is because for a
dataset at level d, d attribute-value tests have already
been made at its ancestor nodes, leaving only m —
d attributes as candidates for further partitioning the
dataset.

For computing an entropy value according to the ex-
pression given in equation 3 above we need to compute:

e one N; count;
e [Ny counts; and
e 2 Ny, counts.

The expression for N; contains (¥ sum terms (one
for each tuple in relation Shareds) and each sum term
consists of n product terms. Therefore computation
of N; requires n * [¥ messages to be exchanged among
sites. Using similar arguments it can be determined
that the computations of Ny and N, require n * [F+1
and n * [*+? message exchanges respectively.

It is possible to compute the entropy values by re-
questing from remote sites only the V. counts because
it is possible for the learning site to locally construct
Nps and Ny by appropriately summing the various N,
counts.

So, computation of each entropy value requires an
exchange of n * (I¥*2) messages. For a dataset at

depth d in the decision tree the number of messages
exchanged would be (m — d) * n * ((*+2). If we as-
sume that on the average the decision tree is akin to a
filled | — ary tree with p levels then the total number
of exchanges would be:

(n+ ¥ " (m—d) « 1P (8)

d=0

The above expression does not take into account some
tuples of Shareds that may not be usable for parti-
tioning a dataset because of an attribute in S having
been used for partitioning at an ancestor node of the
dataset. That exception does not affect the order of
the above expression and i1t can be seen that the num-
ber of messages grows exponentially with the number
of shared attributes and also with the depth of the
induced decision tree.

The above expression gives an estimate of the num-
ber of messages to be exchanged. Since the amount
of information transferred in each message is constant,
for any particular dataset and expected tree depth we
can obtain the estimated data transfer. This can be
compared to the amount of data to be transferred if
the whole relations were to be transferred to a single
site.

Validation and Results

The above described adaptation can be easily verified
by substituting the decomposition expressions for Ny,
Ny and Np. into the original expression for entropy
in equation 3. A few algebraic steps lead one to the
needed simplification.

The above adaptation was also implemented by us
on a network of PCs in a laboratory setting and tested
against a number of small databases Decision trees
were generated by (i) bringing all the relations to one
site and performing a Join and (ii) by keeping them
at their respective sites and using our decomposition
of computations. The resulting decision trees for both
the cases were identical. A comparison of the elapsed-
time for a run is as follows:

o Three databases on different sites, one shared at-
tribute for every pair of tables, all binary values
attributes, 30 tuples in the implicit join of all the
tables, and the average depth of the induced deci-
sion tree is 4 levels. Elapsed time when all tuples
are stored in one table was 5 seconds; Elapsed time
when tuples were stored in three tables containing
fewer attributes each was 206 seconds.

Adaptability of Other Algorithms

The development of the above adaptation has provided
the following insights about the adaptability of other
clustering and pattern discovery algorithms for con-
strained distributed databases.

Many statistical pattern discovery algorithms deter-
mine averages of attribute values for representing pro-

totypes for various classes. The decomposed computa-
tion for determining the average value of an attribute
B in an implicitly specified dataset is as follows:

Avgn = () s (B N (B (9)

ji=1

where N; is the total number of tuples in the dataset,
By ...B; are the possible discrete numeric values of
attribute B, and N(B;) is the count of tuples in the
dataset in which B takes the value B;. The count N;
can be determined as described in expression 4 above.
The count N(Bj;) can be determined as:

n

Np, = .3 > (JIW(d)swa)) (10)

Js2 Js1 t=1

where sub4 is: [S1 = S1;,,],[52 = S2;,]...,[Sk =
Skj,.],[B = Bj] and all other symbols have the same
meanings as described for equation 4. The capabil-
ity to compute averages from implicitly stated datasets
can easily be extended to compute variances, attribute-
weightings, and some other statistical summaries. This
demonstrates that many statistics based pattern dis-
covery and clustering algorithms can be adapted for
the implicitly stated datasets. Also, instead of infor-
mational entropy, many other selection functions have
been suggested in (Ming 89a) and all those that de-
pend on such statistical measures can be adapted for
implicit datasets.

Algorithms in which presentation of explicit exam-
ples (tuples) to the learning agent is a must are not
adaptable for constrained distributed database situ-
ations. Training of neural nets and other gradient-
descent based methods require presentation of individ-
ual examples to the net and in case of implicit tuple
set these are not available. It is almost impossible to
take computations performed within each neuron or a
threshold unit in response to a training example, de-
compose them, and take respective components to in-
dividual databases specifying the implicit set of tuples.

Many incremental learning algorithms work by com-
paring the concept induced so far and the new/next
tuple. The constraints of our distributed environment
do not permit the next tuple to be made explicit and
available to the learning site. However, a completely
new decision tree or concept may be inferred, starting
ab initro. Such incremental learning algorithms would
not be adaptable to the case of implicit datasets.

Conclusion

We have considered the case of discovering patterns in
those sets of databases that have constraints on trans-
ferring data out of their individual sites. They can
only transmit statistical summaries to authorized sites.
We have demonstrated the adaptability of an informa-
tional entropy driven decision tree induction algorithm
for the constrained case. We have also discussed some

general issues about adaptability of pattern discovery
algorithms and have also discussed the types of algo-
rithms that may or may not be adaptable to the con-
strained situations.

Acknowledgment: This research was sup-
ported in part by the National Science Foundation
Grant Number IRI-9308868. We are thankful to
Hari Chandana Nidumolu who ran the programs
on various sets of data. We are also thankful to
the reviewers for providing useful comments.

References

Breiman, L., Friedman, J. H., Olshen, R. A., and
Stone, C. J. 1984. Classification and Regression
Trees, Belmont, CA: Wadsworth.

Buntine, W., and Niblett, T. 1992. A further
comparison of splitting rules for decision-tree in-
duction. Machine Learning, vol. 8, pp.75-86.

Han J., Huang, Y, Cercone, N., and Fu, Y.
1996. Intelligent Query Answering by Knowl-
edge Discovery Techniques. IFEFE Transactions
on Knowledge and Data Fngineering, vol. 8. n0.
3, pp 373-390.

Mingers, J. 1989. An empirical comparison of se-
lection measures for decision-tree induction. Ma-
chine Learning, vol. 3, pp 319-342.

Mingers, J. 1989. An empirical comparison of
pruning methods for decision-tree induction. Ma-
chine Learning, vol. 4, pp 227-243.

Quinlan, J. R. 1986. Induction of Decision Trees,
Machine Learning, vol 1, pp 81-106.

Yu, C, Ozsoyoglu, Z. M., and Kam, K. 1984. Op-
timization of Distributed Tree Queries, J, Com-
puter System Science, vol. 29. no.3 pp 409-445.
Wang, C., Chen, M., 1996. On the Complexity of
Distributed Query Optimization. IFEFE Transac-
tions on Knowledge and Data Engineering, vol.
8, no. 4, pp 650-662.

Zhang, T., Ramakrishnan, R., Livny, M. 1996.
Proceedings of SIGMOD 96, 6/96, pp 103-114.

