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Abstract

A classifier based on a syntactic approach is developed for High range resolution (HRR) radar target recognition. An attribute grammar is used to represent the structure of an HRR signature and an error-correcting parsing mechanism is implemented to extract peaks in the HRR profile and suppress the extraneous spikes. In the training phase, an error correcting grammatical inference technique is employed for structural inference of HRR signatures using a positive sample set. Recognition is done using a minimum distance classifier where Levenshtein error measure is used as the distance metric. The error-correcting parsing procedure for peak extraction is used to perform both inference and recognition. Experiments performed using public release MSTAR database indicate that this approach has sufficient discrimination power to perform target detection in HRR signatures. 
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1. Introduction

In contrast to traditional decision theoretic classification methods, research described here presents a classifier design for HRR signatures based on the principles of syntactic pattern recognition. A syntactic system consists of a pattern induction phase, which processes the training signatures into a structural description in the form of a grammar, and a syntax analysis phase, which uses the structural description (grammar) to infer the identity of the unknown signature. 


A structural representation of the HRR profiles is significant because it models the underlying physics more closely than do the MSE based methods. A syntactic approach is better than decision-theoretic methods like mean square error (MSE) classification, especially when the number of classes is large, as it is more tolerant to variations in peak characteristics and it has useful information about the peaks in the form of attributes. It gives a more robust and accurate classification. 


Attribute grammars are used to represent statistical information about the peaks. Attributes are used as semantic information during parsing. An error correcting grammatical inference technique is employed for structural inference of HRR signatures. The inference phase makes the classifier robust to changes in peak characteristics. Recognition is done using a minimum distance classifier based on Levenshtein error measure. The error-correcting parsing procedure for peak extraction is used to perform both inference and recognition.
2. Related Research

2.1 ATR Research 

In some sense, every ATR algorithm is model based because every algorithm makes and uses a priori assumptions about target and clutter characteristics. Research in model-based target recognition includes matching and evidence accumulation, indexing and modeling.

A hierarchical auto-regressive moving average (ARMA) model for modeling HRR radar signals at multiple scales has been suggested by R. Chellappa et. al.[17]. The spectral features extracted from the model are used for classifying the radar signatures. A time-varying auto-regressive (TVAR) modeling of high range resolution radar signatures for classification has been proposed by K. B. Eom [16]. For classification of HRR pattern, the estimated TVAR parameters are used as features and a neural network is used to classify these TVAR features.


A deterministic and a conditionally Gaussian model for the range profile is introduced and compared for varying target types and orientations by Jacobs et. al.[19-22]. ATR using HRR profiles has also been tried using Neural Networks [24]. A statistical feature based classifier for robust high range resolution radar target identification has been investigated by Mitchell et. al.[15]. The target features used for classification are the amplitude and location of HRR signature peaks. All the above methods for HRR pattern recognition are based on decision theoretic approaches. Structural methods have not been used for HRR signatures, although they have been successfully employed in many other pattern recognition applications. 

2.2 Syntactic Pattern Recognition and Applications

Several investigators have advocated combining syntactic and statistical recognition approaches in the past decade. The motivation arises from the fact that neither the syntactic approach nor the statistical approach alone is adequate for some practical applications: the former is weak in handling noisy patterns and the latter is unable to describe complex pattern structures and sub-pattern relations. Attribute grammars[3] are used as a tool for combining the syntactic and the statistical approaches to pattern recognition. A pattern analysis system using attribute grammars for pattern classification was proposed by K. S. Fu et. al[3]. 

Syntactic pattern recognition approaches using attribute grammars have been tried for waveform analysis of ECG signals[4-14]. An interpreter for attribute grammars was developed and applied to waveform analysis[12]. Papakonstantinou et.al.[4] developed attribute grammars for detection of QRS complex in ECG signals. Attributed automata and hidden markov models have been developed for ECG signal analysis by Antti Koski[13, 14]. 


Grammatical inference can play an important role in this issue since it is one of the methodologies that can be used to generate the model classes. A few approaches to automatically acquire generic models are: neural networks, hidden markov models (HMMs) and grammatical inference. Grammatical inference is a well-established discipline and it has been applied to a number of applications in pattern recognition. K-tails method is widely used in practice for inference of regular grammars because it is easy to operate. It uses a simple heuristic state merging process. Error-correcting grammatical inference was introduced by Rulot and Vidal[32].

Grammatical inference has been successfully employed in the field of RNA modeling. Stochastic context free grammar parameters are learned automatically from RNA training sequences using a generalization of HMM forward-backward algorithm based on tree grammars[35]. A modified inside-outside algorithm for stochastic context-free grammars has been used to predict the protein secondary structures[36]. Algeria, a state-merging method, and error-correcting grammatical inference have been employed to improve precision in information extraction[34]. Error-correcting grammatical inference is applied for music style recognition and composition[33].


 In some practical applications, certain amount of uncertainty exists in the process under study. For example, noise or distortion exists in HRR signatures. Error-correcting parsing is one method for parsing noisy patterns. A bottom-up error-correcting parser based on Levenshtein’s distance has been proposed by Tanaka and K.S. Fu[30, 31] and Yamasaki and Tonomura independently. Aho and Peterson proposed a top-down error-correcting parser based on the Earley parser.


In our study, attribute grammars have been used to represent HRR profiles. An error-correcting bottom-up parsing mechanism has been developed for peak recognition in HRR profiles. Error correcting grammatical inference is employed for learning sample HRR patterns and recognition is done using Levenshtein distance measure. The error-correcting parsing procedure can perform both inference and recognition in an integrated way.

3. System Overview
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Figure 1

The pattern recognition system for the HRR patterns has been implemented in two phases. In the learning phase (analysis mode), the information about the classes is gathered from the training samples. It consists of primitive selection and grammatical (or structural) inference for each window around a target. In the recognition mode, this information is used to classify a test profile. The recognition phase consists of preprocessing, segmentation or decomposition, primitive recognition, and syntax analysis. An error correcting parser is used in the recognition mode.

The profile is initially preprocessed to remove some noisy components. The profiles are aligned with respect to one another before the inference or recognition stages. The preprocessing and alignment phases are explained in sections 3.1 and 3.2. A grammatical inference section is executed during a learning session, which occurs prior to classification. Typically, 360 templates of 1-degree width each are constructed for a vehicle. A 1-degree sub-target typically includes twenty-five training signatures. During the grammatical inference stage these twenty-five contiguous range profiles are trained to obtain the representative template for the sub-target. 

During recognition it is often possible to devise a procedure which when followed would lead to an optimal classification. This typically includes measuring some kind of distance between the input string and each of the potential classes. In order to take into account the distortions, a weighed Levenshtein distance[25] is employed as the error measure. The time spent in the recognition mode is more important than the time spent in the analysis mode, while establishing the system. The time spent in recognition phase is important as the battle field situations demand quick decisions. It is considered acceptable to spend extra time in the training mode to prepare further information about the classes if this can reduce the recognition time. With this strategy we overcome the problem of distortions and partial occlusions with a low computational processing time. 

An error-correcting grammatical inference[32] procedure is used for training the samples. As each new string is presented, the learning procedure attempts its recognition with its current grammar. If it fails, the grammar is updated by adding the necessary symbols so as to enable the recognition of the new string. The resulting grammar is further generalized to accept all strings in the training sample as well as other strings composed of adequate concatenations of certain subset of their sub-strings. The minimum number of additional states required to accept a given input string can be considered as a measure of the dissimilarity between that string and the nearest string acceptable by the current grammar. This dissimilarity can be used to classify the input string with respect to different classes represented by the corresponding grammar. The minimization algorithm incorporates error-correcting parsing scheme with Levenshtein error measure. Therefore, the method can perform inference and recognition in an integrated and simultaneous way.

3.1 Preprocessing


Preprocessing is necessary before pattern primitives can be extracted from the raw data. During the preprocessing stage, the signature is smoothened to reduce high frequency components using a weighed local average. This will remove some noisy spikes and smoothens the signature. In our case, the averaging is performed in a one-dimensional window of size three. However, this may result in the loss of certain information like the value of peak amplitude. The shape of the waveform is usually preserved and important structural information about real peaks is not lost. Any remaining noisy peaks will be accounted for during the learning phase.

3.2  Alignment of Profiles using Structural Information


The relative location of Peaks is an important feature in the classification. Hence, the alignment of the signatures is to be done before matching two signatures. A mean square error measure can be used to align two waveforms. This is done by moving one waveform relative to another and finding the position where the MSE is minimum. This does not always give proper alignment. It works when the width of the signal is same for both the profiles. The method outlined above gives the alignment shown in figure 2.


 The matching process results in incorrect match if the peak position is taken as a feature for pattern match. Hence, the mean square error value is computed for the common area between the two profiles and the value is normalized by dividing it with the number of common range bins or the common width. The distance along which the waveform should be shifted has to be properly calculated. If it is too small, they may not be optimally aligned. If the value is too large, it may result in an inaccurate alignment because the mean square error value across the common range decreases as the area of intersection between the two peaks decreases. Hence, the minimum MSE value might occur at a point where the area of intersection of the two profiles is the least. 


Hence, an algorithm using the structural information in the signatures is used to find proper MSE values. The profiles consist of a sequence of peaks. Peaks are divided into two types based on their amplitude: ‘S’ represents a short peak with amplitude less than a given threshold (, which in the test with four vehicle case is 0.8. ‘L’ peaks have larger amplitude values. All waveforms have a structure of the form S*LS* or S*L(S|L)*LS* i.e, they have an optional sequence of smaller peaks(clutter), followed by a sequence of small and large peaks and an optional sequence of smaller peaks(clutter). The profiles have a common middle portion L or L(S|L)*L. The extent of beginning and trailing portions consisting of ‘S’ peaks can vary for similar profiles. An ‘L’ peak can appear as an ‘S’ peak in an adjacent profile due to large variance in peak heights for small aspect angle changes.  


 As all the waveforms have the middle portion, it is enough to align only the common portion. The alignment procedure is given below

Step 1: The position of the longer profile(i.e., the signature occupying more range bins) is fixed. Initially, the leftmost ‘L’ peak of the smaller signature is placed on the leftmost peak of the longer profile and MSE value of the intersecting area is calculated. The MSE values are taken only for the part of the waveform, which lies in the intersecting area. 

Step 2: The smaller waveform is then shifted one unit towards right until its last ‘L’ peak matches the last peak of the longer profile. The MSE values are calculated at each position. 

Step 3: The position where the minimum MSE value occurs gives the exact alignment of the two signatures.
The algorithm using the structural information results in an alignment shown in figure 3. As seen, it results in a good alignment and thus a better match.
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Figure 3

4. Error-correcting parser for peak extraction


An equivalent syntactic pattern representation of HRR profiles tends to impose a structure on the signals. The HRR signal is further divided into sub-structures. The most important sub-pattern in the HRR signature is a peak. The aim of the parser is to accurately identify the sub-patterns i.e., peaks in the signal. A Context free grammar is presented that analyzes the sequence of HRR primitives and recognizes the peaks in the HRR signal.


Non-context-free characteristics can be described using attribute grammars. Attribute grammars serve as good specification language. However, these attributed methods require a great number of different parameters or attributes to control the parsing process of the signatures. Combining the syntactic methods based on the measurement vectors (such as amplitude, arm length, etc.) by applying the attributed grammars at the stage of feature extraction, it is possible to consider in the classification process not only the numerical values but also the shape parameters.

4.1 Primitive Selection


It is difficult to provide a finite set of primitives representing the peaks. But for syntactic pattern recognition, it is necessary to represent the HRR profile symbolically using a finite set of primitives. Primitive selection is both problem and pattern dependent and there is no general solution to this problem as yet. An accurate primitive extraction requires a parsing method able to cope with noisy structures and previously unknown inputs. It is the purpose of syntax analysis that will finally set demands for the primitives and for the amount of information that can be obtained from the primitives. It is best to prefer as small a number of different terminals as possible, since we can construct smaller recognition systems. Alternatively, a more accurately structured information can be described with a greater number of primitives. 


A preprocessed waveform is segmented into a sequence of line segments and each line segment is encoded symbolically. Horowitz[39] has applied the syntactic approach to peak recognition in waveforms. We let ‘p’ denote a positively sloped line segment of unit width, ‘n’ a negative slope segment and ‘o’ a line segment with slope zero.  An example of a string encoding of a waveform could be

       “ppnnpppnpnnnonpponnnnppppnpnpn”

A positive peak consists of a sequence of positively sloped line segments followed by a sequence of negatively sloped line segments. Symbolically,

The left arm of a positive peak is  
P(p|p(p|o)*p

The right arm is


Q(n|n(n|o)*n

A complete positive peak is
R(Po*Q

However, this simple representation of a peak is not sufficient, as it does not take into consideration the variation in peak characteristics due to noise. The effect of noise is manifested as extraneous peaks and as a shift of its baseline. Small extraneous peaks or spikes superimposed on a large peak may result in shortening the width and arm length of the peak. Large error peaks may be erroneously detected as prominent peaks. Therefore, a more complex and a generic representation scheme is required. Hence, a syntactic algorithm for the detection of peaks is developed as part of the research described here. 


In order to make the language more compact and the grammar simpler, it is necessary to suppress noise spikes and vacillations. These persist in the string as either small isolated peaks or as sequences of contiguous and alternating positive and negative slope symbols. The training/recognition algorithm should remove the isolated small peak symbols from the string and replace sequences of positive and negative slope symbols by strings of appropriate length of the symbol, without distorting the shape of the original waveform. 

Our pattern grammar is formulated in such a way that it can be used to parse error-free input strings as well as erroneous input strings. The grammar is able to cope with errors due to noise or extraneous peaks. The peaks are characterized based on their amplitude, left arm length and right arm length values. The following values of parameters have been found to give the best result in the current analysis. 

The primitives used for peak amplitude are {s, m, l} where, ‘s’ represents a small peak amplitude, whose value is less than a predetermined threshold, (1.  ‘l’ represents a large peak amplitude, whose value is greater than a predetermined threshold, (2. ’m’ represents a peak with intermediate peak amplitude, lying between (1 and (2. In our case, the values of (1 and (2 as 0.6 and 0.8 respectively were found to be suitable.



The primitive symbols used for the arm length are : {a, b, c, d, e} where, 


                  |a| < (1,
      (1 <= |b| < (2,


        (2 <= |c| < (3,
      (3 <= |d| < (4, 

and  (4 <= |e| 


The threshold values (1, (2, (3 and (4 have been empirically determined to be 0.025, 0.05, 0.12 and 0.22 respectively for the four-vehicle case. Other important peak features like peak position and width information are taken as attributes. The attribute grammar representation of peaks is described in the next section. Figure 4 shows the feature set used for classification.

4.2 Syntax Analysis

 
To reduce the size of the grammar, two more non-terminals are introduced to represent the arm length.

<small> ( a | b | c

<large> ( d | e

 In the syntax analysis phase other non-terminals are introduced to define the peaks and the profile.  For the present purpose, only 4 types of peaks have been defined based on the arm lengths. 

The non-terminal, ‘<A>’ represents any of the peak amplitude primitives

<A> ( s | m | l       

The four different types of peaks are represented by the non-terminals, 

<P1> ( <large><A><large>       , P1 is a peak with larger right arm and larger left arm.

<P2> ( <small><A><large>      , P2 is a peak with smaller left arm and larger right arm.

<P3> ( <large><A><small>      , P3 is a peak with smaller right arm and larger left arm.

<P4> ( <small><A><large>      , P4 is a peak with smaller right  arm and smaller left arm.

<P> ( <P1> | <P2> | <P3> | <P4> , P represents any kind of peak.

The attributes of the terminal symbols are also used as synthesized attributes for the non-terminal symbols. A set of six attributes is assigned to each peak : (i) position of peak(pos), (ii) peak amplitude(amp), (iii) length of left arm(la), (iv) width of left arm(lw), (v) length of right arm(ra) along y-axis and (vi) width of right arm(rw) along x-axis. 

Figure 4.1 shows a waveform with three peaks, A, B and C. The attributes of peak B are shown in the figure. The peak B is symbolically encoded as :

Left arm symbol : ‘e’                la>(4

Right arm symbol : ‘e’              ra>(4

Peak amplitude symbol : ‘l’      amp>(2

Hence, the peak B is : ‘ele’

Using the given productions, <P1> *( ele. Similar symbolic encoding of the entire waveform gives the following terminal string :
‘embeledle’ 

Applying the given productions gives the following representation using non-terminals

‘<P3><P1><P1>’

In order to suppress noisy peaks, some more productions are added. A sequence of peaks is replaced by a single peak symbol without distorting the shape of the waveform based on the following syntactic rules.

<P> ( <P4><P> | <P3><P> … 
(i)

<P> ( <P><P4> | <P><P2> … 
(ii)

 
The above rules concatenate two or more peaks into a single peak symbol. The extraneous peaks are suppressed by the concatenation or join operation, which produces a single peak symbol. Sub-pattern primitives cannot be extracted before syntax analysis and semantics computation because without the guidance of syntax analysis, the system would not know which terminals should be grouped into non-terminals.

Let the join of two peaks P2 and P3 produce peak P1. (pos2, amp2, la2, lw2, ra2, rw2) and (pos3, amp3, la3, lw3, ra3, rw3) be the attributes of peaks, P2 and P3 respectively. The synthesized attributes of peak P1 are determined as follows:

If  (amp2<amp3)



pos1=pos3



amp1=amp3



la1=la2-ra2+la3



lw1=lw2+rw2+lw3



ra1=ra3



rw1=rw3


else



pos1=pos2



amp1=amp2



la1=la2



lw1=lw2



ra1=ra2-la3+ra3



rw1=rw2+lw3+rw3

end









Figure 4


Based on the synthesized attributes derived as above, the following rules are applied:

<P1> ( <P>    if P.la > ( and p.ra > (
<P2> ( <P>   if P.la < ( and p.ra > (
<P3> ( <P>    if P.la > ( and p.ra < (
<P4> ( <P>    if P.la < ( and p.ra < (

where, ( = (3
 The syntactic rules given above suppress the low energy peaks and smoothen the waveform structure. A peak with large right arm cannot be concatenated on its right with a peak having larger left arm. Extraneous peaks are considered to be in the form of small spikes and do not appear as large peaks. Hence, concatenations of the form <P1><P3>, <P2><P3> are not allowed and hence the concatenation procedure would return an error value. However, if there is a large noisy peak, it is accounted for during the grammatical inference phase.

In the waveform of figure 4.1, peaks A and B can be joined using the productions,

<P> ( <P3><P>

        ( <P3><P1>, using  the rule  <P> ( <P1>

Peak A gets suppressed and the synthesized attributes for the resulting peak are determined using the procedure outlined above. However, peaks B and C cannot be concatenated, as there is no production of the form <P> *( <P1><P1>. This is meaningful, as peaks B and C are real peaks and Peak A can be either a real peak or a noisy peak.   The grammar of the template with which the profile is parsed determines whether peak A is suppressed or is taken as a real peak. The error-correcting parser converts the profile into a string in the grammar, closest to the profile. If there is a corresponding peak in the template, A is taken as a valid peak; otherwise it is taken as a noisy peak and is suppressed using the rules shown above. 

The above grammar along with some more semantic rules is used for the detection of peaks in the HRR signatures. LR(k) parsing mechanism is used to extract peaks. The peak location and width values are used as a semantic measure to restrict the look ahead. The parsing is done in the context of a model or template. The grammar of the template is used to parse the profile using the error correcting parsing procedure defined above to produce the closest matched string from the profile. The input string to the parser consists of a sequence of peaks. 

The parsing mechanism is given below. A similar LR(k) parsing mechanism has been used by Martti Juhola[1] for analysis of saccadic eye movements. The error correcting parsing procedure for peak extraction described as below is used in the grammatical inference phase and the recognition phase, where an error measure is calculated to find the distance between the prototype and the test profile.   

Step 1 : The beginning symbol of the profile is determined by finding the location of the peak in the profile that corresponds to the location of the first peak in the template. This symbol is taken as a valid peak. But a valid peak end has to be found. Hence, the search continues to find the beginning of a new peak.

Step 2 : If the location attribute value of next input symbol (peak) corresponds to that of the next peak in the template, the current peak is accepted and the search for a new peak starts. Otherwise, the next symbol is added to the look-ahead string to be examined and the search for the end of current peak continues. 

Step 3 : The look-ahead string is processed and the concatenated to the current peak if the concatenation results in a peak satisfying any of the two properties 

(a) la<ra-( , where the value of ( is predetermined.

(b) (pos+rw) value of the peak matches that of the peak in the template. This value determines the position of peak end.

Step 4 : The end point is also reached if the next peak is real (i.e., the peak cannot be suppressed because the join of peaks <P1> and <P1> or <P2> and <P3> are not valid as they cannot be produced by syntactic rules (i) & (ii)). 

Step 5 : The peak is accepted if the end of profile or template is reached and parsing stops. 

5. Error-correcting Grammatical Inference

In the grammatical inference phase, a model is developed for each class after training. Initially, the first sample is taken as the template and the other profiles are compared with it and a new template is derived. The set of examples could be from a positive sample, set of strings belonging to the target language or from a negative sample, strings that do not belong to the target language but help the induction process. However, no practical algorithm has tried to use negative samples, though it could be a very good help for the basic heuristic on the positive sample.  


 Error correcting grammatical inference (ECGI) is a grammatical inference heuristic designed to capture relevant regularities of concatenation and length exhibited by substructures of uni-dimensional pattern. It was proposed by Rulot and Vidal (1988)[32] and relies on error-correcting parsing to build up a stochastic regular grammar through a single incremental pass over a positive training set. Initially, a trivial grammar is built from the first string of the training sequence. It consists of a sequence of peaks. Then, for every new string that cannot be parsed with the current grammar, a standard error correcting scheme is adopted to determine a string in the language of the current grammar closest to the input string. This is achieved through an error-correcting parsing procedure that is presented in the previous section. From these results the current grammar is updated by adding new rules along with other adequate generalizations. The parsing results are used to update frequency counts or probabilities of occurrence of certain rules. 

One way to reduce the distortions introduced by the preprocessing phases and speedup the identification of the models is to eliminate as much as possible the early phases and maximize the training phase to reduce distortions. The model learning process is done at the raw level without requiring any process to extract specific structural relations of the models. Initially, a covering grammar is constructed that generates the training data as a proper subset. Any HRR profile can be represented as a sequence of peaks, each of which can again be a concatenation of multiple noisy peaks. The concatenation rules are specified in section 4.2. Every peak can be expressed by the attribute grammar described earlier. A peak can be represented as a sequence of three primitive symbols and six attributes. After the training phase, the probability information of each peak type is associated with each peak. The inference algorithm is presented below. 

5.1 ECGI Algorithm

Step 1 : The first signature is taken as template and a trivial grammar is initially generated to represent it.

Step 2 : Using the grammar of the template generated so far, the error correcting parser extracts peaks from the next sample signature and updates the template. The parser adjusts the symbols in the new sample to suppress erroneous peaks and to generate a string closest to the template. The parser also updates the structure of each peak in the template by suppressing extraneous peaks still present. This is done by modifying the grammar of the template.

Step 3 : If there is a real peak symbol in the new sample string that is absent in the template, the algorithm backtracks to recover the peak symbol from previous training samples in case it was erroneously taken to be an extraneous peak. 

Step 4 : Probabilities for each peak type are :

pi = (number of sample peaks corresponding to the ith rule) / (size of the training sample). 

pi represents the probability of occurrence of peak corresponding to the ith rule in a given location for a given target orientation. The rules are given in table 6.1.

Step 5 : The model generated after learning all the samples is generalized further to include peaks similar to the training sample. This accepts peak symbols composed of concatenations of the three primitive symbols (left arm, amplitude,  right arm). 

The worst-case time complexity of the algorithm is n2m where n is the number of samples and m is average length of input string. In the best case, the time complexity of the algorithm is nm. The algorithm is further optimized by removing the backtracking stage in step 3. In the new algorithm, backtracking is done once after all the samples are trained. This improves the complexity of the algorithm to ‘nm’. 

5.2 Illustrative Example


Consider for instance the inference of a template/model from the profiles of the tank given in figures 5(a) to 5(d). The profiles are within 1-degree range (between 0-degree to 1-degree azimuth). Initially the first profile in figure 5(a) is taken as the template. The grammar for the first profile is : 



          S1


           P2
P2       
P4      
P1        P3


       e  s   b   e   s   b  c  s  b e  l  e  a   s   e


This is taken as the initial template. The second profile is converted into symbolic form
          S2


        P2          P2            P1


 e   s    b     d   s   b      e   l   e  

Using the error-correcting parsing procedure discussed earlier and the grammar of the first profile, the string representing the second profile is parsed. Peaks P13 and P15 are suppressed as extraneous peaks. The language representing the grammar of the model generated after learning two samples consists of the strings:

S1 ( <P2><P2><P1> ( (esb)(esb)(ele)

S2 ( <P2><P2><P1> ( (esb)(dsb)(ele)


The third sample has six peaks. The grammar representing the third profile is: 

S3 ( <P2><P2><P2><P4><P4><P1>   ( (esb)(dsc)(emc)(asc)(bsc)(ele)

Peak P33 is taken as a real peak and as per Step 3 of the inference algorithm, profiles 1 and 2, are trained again to recover the peaks corresponding to P33, if any. There is no such peak in the second sample, but peak P13 in the first profile is recovered, which has been previously suppressed. The language of the template generated so far:

S1(<P2><P2><P4><P1>((esb)(esb)(csb)(ele)

S2 ( <P2><P2><P1> ( (esb)(dsb)(ele)

S3(<P2><P2><P1><P1((esb)(dsc)(eme)(ele)


There are four peaks in the template, but the second sample does not have the third peak. The fourth sample is initially denoted by the following trivial grammar.

S4 ( <P2><P2><P1><P3><P1><P3>   ( (esa)(dsb)(eld)(ame)(ele)(ase)

The language generated by the grammar representing all the training samples has strings given above and a fourth string :  S4(<P2><P2><P1><P1>( (esa)(dsb)(ele)(ele)

         The structure of each of the four peaks is:

First peak :  (esb):3 | (esa):1

Second peak : (esb):1 | (dsb):2 | (dsc):1

Third peak : (csb):1 | (eme):1 | (ele):1 | (:1

Fourth peak : (ele):4

The number beside each string denotes the number of samples in which the peak has the same structure. The terminal ‘(’ denotes an empty string to represent the absence of a peak. The grammar generated is generalized to include strings similar to the training sample. This is achieved by allowing all possible concatenations of symbols in a peak and adding intermediate peak primitives. The strings representing the peaks after generalization are:

Figure 5(a)
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    Figure 5(d)

First peak :  es(a | b)

Second peak : (d | e)s(b | c)

Third peak : (c | d | e)(s | m | l)(b | c | d | e)

Fourth peak : (ele)


After training all the samples, the template is represented by the above grammar, which generates the strings representative of the training sample. A peak can be in any of the twelve given forms. Probabilities for the occurrence of each peak type in a given location are determined. 


p1 : <P> ( <small>s<small>

p2 : <P> ( <small>s<large>

p3 : <P> ( <large>s<small>

p4 : <P> ( <large>s<large>

p5 : <P> ( <small>m<small>

p6 : <P> ( <small>m<large>

p7 : <P> ( <large>m<small>

p8 : <P> ( <large>m<large>

p9 : <P> ( <small>l<small>

p10: <P> ( <small>l<large>

p11: <P> ( <large>l<small>

p12: <P> ( <large>l<large>









Figure 6

p1, p2,..p12  represent the probabilities corresponding to each peak type such that ( pi <= 1. The probabilities pi for each peak type are determined after the training phase. The probability of occurrence of a peak at a given location is obtained by adding the probabilities pi for all the twelve peaks. (1-( pi ) gives the probability that there is no peak in the given location. The probabilities generated after training four samples are given below

The attributed grammars along with the probabilities are stored in a database, which are used later in the recognition phase. Some information is lost during the inference stage. Some small peaks like P15 and P46 are suppressed, even though they are real peaks. However, important information regarding larger peaks is restored and hence the inference algorithm is robust to noise in profiles. 
6. Target Recognition


In the recognition phase, the test profile is compared to any one of the possible pattern class templates. The classification is based on a minimum distance measure. In the present case, the minimum-distance criterion is based on the weighed Levenshtein distance[25]. The error transformations are defined in terms of match (no change), substitution, deletion and insertion of peak symbols. It is an efficient measure of similarity between two phrases. For a given input string y, the parser searches for a sentence z in the language L(G) describing a template, such that distance between z and y is the minimum among the distance between all the sentences in L(G) and y. This minimum distance value is the distance between the string y and the template represented by the language L(G). 


The symbolic representation of peaks consists of three fields : left arm , amplitude and right arm. The primitives for arm length are { a, b, c, d, e }. For simplicity, they are encoded into equivalent integral values { 1, 2, 3, 4, 5 }. The distance between each consecutive sample is 1 i.e., D(b,c) = D(d,e) = 1. The primitives for amplitude are {s, m, l}, which are encoded into {2, 4, 6} and the distance measure is D(s, m) = D(m, l) = 2. 

Insertion error : The error introduced in inserting a peak in the template which is absent in the profile. This value is given by  
Eij = Pj*min(L, R)


Here, ‘L’ refers to the minimum value of the encoded left arm of the peak in the template.


‘R’ denoted the minimum value of the encoded right arm.


Pj refers to the probability of occurrence of the ‘jth’ peak and is given by
Pj = ( pI

Deletion error : This error occurs when there is a peak in the profile for which there is no corresponding peak in the template.


Edj = min(L, R)


Substitution error : The amount of error introduced in replacing the peak in the profile by a peak in the template. It is also the distance between the peaks in the profile and template. 


Esj = Pj*(sum of distances between encoded left arm, right arm and amplitude values of the profile and the nearest string of the template)

Match error : This occurs if there is a peak symbol in the template which is similar to that in the profile, but its probability pi<1.


Emj =1-pi 

The total error measure is obtained by adding the error values obtained for all the peaks. This total value is divided by the number of peaks to give a normalized distance measure between the profile and template. The recognition algorithm is presented below. 

1. Align the test profile with the template to be matched. Generate a string representation of the profile.

2. Using the grammar, G of the template, parse the test profile string with the help of the error-correcting parser to extract peaks in test sample. Search for a string in the language L(G) which is closer to the test signature.

3. For each peak parsed, compute the levenshtein distance measure of insertion, deletion or substitution. 

4. After parsing all the peaks in the profile and template, divide the total error value by the number of peaks, which is the total number of substitutions, deletions and insertions done. This gives the normalized distance measure between the template and the profile.

5. The above procedure is repeated for all the templates and the distance measures are computed. The template, which gives the minimum distance value, is considered to be the best match. 

Figure 6 shows a test profile of a tank taken at 26-degree azimuth. This is compared with the grammar, G of another tank derived earlier. Initially, a trivial grammar is developed for the test profile.




S(<P2><P4><P2><P2><P3><P1><P1  ((esc)(asc)(dsc)(emb)(amd)(ele)(dme)


The error correcting parser suppresses the peaks E2 and E5 giving:

S ( <P1><P2><P1><P1><P1>  ( (esd)(dsc)(emd)(ele)(dme) 

The first four peaks are matched with the four peaks of the template. The string in the language L(G), representing the template, that is closer to the test profile is (esb)(dsc)(emd)(ele). The distance between the template and the test profile is: E = Es1 + Em2 + Em3 + Em4 + Ed5.. The normalized distance measure, L = E/5. The value of ‘L’ is used as the distance measure between the template and the test signature. These values are computed for all the templates and the template that gives the minimum value indicates the class to which the test profile is assigned.

7. Results

The data set used to test the performance of the Syntactic classifier consists of four military vehicles. The angle of elevation from which the profiles are taken is 17 degrees. There are approximately 18000 profiles for each target spanning the whole 360 degrees around the target. The given data is divided into two sets, one set for training and the other for testing. Each target has about 9000 training samples taken 360 degrees around the target. A template grammar is developed for each 1-degree azimuth using 25 samples for inference. Hence, there are 360 templates for each target. 

In the classification phase, there are 9000 test profiles for each vehicle. Each test profile is compared with 15 templates of each vehicle using the recognition algorithm discussed earlier. The 15 templates have the azimuth angle within +/- 7-degrees of the test profile. Hence, each test signature is compared with 60 templates and the minimum value of the Levenshtein distance measure is computed. 




A confusion matrix is derived from the test results as shown in table 1. The classifier based on the syntactic approach gives satisfactory results. In case of the targets, Target-3 and Target-4, the percentage of correct classification is as high as 70.  


   Figure 7





   Figure 8

The graph in figure 7 compares the performance of the classifiers using MSE, normalized MSE and levenshtein distance metrics. Normalized MSE value is computed by taking the MSE value of the common area between the test profile and the target profile and dividing the value by the common width. The performance of MSE based classifier is better than that of the Syntactic approach. However, there is a large scope for improvements in the syntactic classifier. 

The polar plot in figures 8 shows the sector-wise performance of the syntactic classifier The performance of both the classifiers varies with the aspect angle. The performance is poorer in the broadside region (i.e., region around 90-degrees and 270-degrees azimuth) of the target. This may be true because the total energy reflected and the resultant HRR signatures are generally smaller in the broadside regions. There would be lesser number of peaks and hence, lesser information needed to discriminate between the profiles of two different vehicles. 

Figure 9 shows the frequency histogram of the Levenshtein error. The histogram represents the probability density functions of the random variable, which is the error value. The first hypothesis consists of samples belonging to the target vehicle) and the second hypothesis consists of confusers, which are the other three vehicles. The distributions show that the first hypothesis ( the actual target) is to the left while the second hypothesis (consisting of confuser vehicles) is more to the right. 

Based on the histogram, a suitable decision-threshold can be established to classify certain samples as not belonging to any of the target classes. If the threshold is low, the probability that the correct target is identified is low. It the threshold is high, the probability that a confuser vehicle is identified as the target is also high, resulting in a greater probability of misclassification. 

                 Figure 9

The actual threshold value depends on the demands of the impending situation. Specific figures-of merit have been defined to evaluate the performance of ATR system.

Probability of detection(Pd) : no of targets detected / number of targets tested.

Probability of False Alarm (Pfa) : Number of confusers detected / number of confusers tested. 

The metrics generated for each hypothesis are then manipulated to produce a receiver operating characteristic (ROC) curve which depicts the overall performance of the ATR system. ROC curves are generated by plotting the probability of false alarm (on x-axis) Vs probability of detection (on y-axis).


In this series of tests, using four vehicles, the performance of the Syntactic method is compared to that of a MSE based system through their respective ROC curves as shown in figures 10(a) and 10(b). Each system is tested with a collection of both target and confuser vehicles against a trained collection of the target vehicle. Better performance in a ROC is characterized by the curve being closer to the upper left-hand corner of the graph. Larger the separation between the two hypothesis distributions, the more the ROC curve is pushed towards the upper left hand side. Given a desired detection rate, the user can determine from the ROC curve what acceptable threshold to use in order to minimize the probability of false detection.


Figure 10(a)  



         

 Figure 10(b)

When the threshold is low there is a low probability of false negative, but a low probability of correct identification as well. As the threshold goes up, the probabilities of both occurrences go up until the threshold is so low that both positive and false identification are certain. As seen from the ROC curves, the performance of syntactic classifier is closer to that of the MSE based classifier.

8. Summary


The main contribution of this research is the development of a structural approach for HRR pattern recognition. The grammatical inference and classification algorithms using attribute grammars and error correcting parsing mechanism are a first step towards a new approach to the HRR pattern recognition problem. With this method, HRR patterns are classified using structural as well as quantitative information from the numerical attributes of the pattern grammars.


The most important sub-structure in HRR signature is a Peak and the error-correcting parsing mechanism is useful to extract important peak information by suppressing noisy peaks. This parsing mechanism can be improved further to extract other important sub-structures. Error-correcting grammatical inference algorithm is appropriate for learning the structure in HRR signatures, but some improvements have to be made. 

The minimum distance classifier based on syntactic approach has given satisfactory results. The choice of weighed Levenshtein distance measure is natural in comparing the distance between two strings. The MSE classifier performed slightly better than the syntactic approach. However, the syntactic approach for HRR pattern recognition is new and the area is open for research. The syntactic classifier has the potential to be a better classifier. 
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Target-1

Target-2

Target-3

Target-4



Target-1

57.60

21.47

17.38

3.56



Target-2

18.65

54.09

23.21

4.05



Target-3

12.24

14.61

70.70

2.44



Target-4

11.41

13.02

6.34

69.23





Table 1 Confusion matrix for 4-target data set


