
Grounding Predicate Symbols with Neural Networks

Richard Horvitz and Raj Bhatnagar

Abstract

We propose a cognitive architecture which integrates symbolic and
connectionist representations. The symbolic representations, in the
form of predicate logic, emerge from, and are grounded in, non-
symbolic experience. This leads to multi-level representations, both
symbolic and non-symbolic. This architecture is preliminary and is
used as motivation for the methods described for grounding predi-
cate logic representations in experience.

We first discuss a method of grounding descriptions in proposi-
tional logic and how that method might be extended to ground de-
scriptions in propositional logic. This method fails to capture the
idea ofobjectso a more involved method is explored. We then dis-
cuss experimental results.

Introduction

Philosophers have pointed out the inadequacies of classical AI
(Searle 1980) and of connectionist systems(Fodor & Pylyshyn
1988). In the first case, strong AI is allegedly refuted through the
Chinese Room thought experiment, which suggests that computers
embody only syntax but not semantics. A solution to this via sym-
bol grounding has been proposed(Harnad 1990),(Harnad 2002). The
symbols then are no longer meaningless tokens, but acquire mean-
ing through experience. The debate still rages, and Searle is still
convinced that he has refuted strong AI(Searle 2002). Thereare log-
ical problems with the Fodor and Pylyshyn’s argument, as noted by
Chalmers(Chalmers 1990) but their criticisms are well noted. Typ-
ical connectionist systems, other than those contrived just to make
the point(Plate 1995),(Smolensky 1990) do not exhibit systematic-
ity, compositionality, and productivity of thought, whichare features
of symbolic reasoning.

As AI systems move toward more human-like activity, such as
with flexible robotic systems, the need for grounding symbolic rep-
resentations in experience has become clear(Jung & Zelinsky 2000).
We go beyond this though and argue that such grounding is needed
not only for communication but is essential for the system’sown
understanding of the world. In this paper we propose outlines of a
cognitive architecture having these features:� The symbolic representation of the world divides the non-

symbolic world of experience into situations, objects and re-
lationships.� Neural networks are used to ground the meaning of symbols
representing objects and relationships.

� The system can move its focus, evaluating what it senses with
these grounding neural networks, filling out situations with
objects and relationships it discovers.� This search is guided by those situations that are currentlyac-
tive, which suggest the likelihood of particular objects and re-
lationships occurring.� Situations become active by the observation of objects and re-
lationships that belong to them.� Probes into the external world that successfully find known
objects or relationships return a multi-level representation of
that object, both symbolic and non-symbolic.� Within a situation causal rules are learned (using neural net-
works) using all levels of these multi-level representations.

This model is not intended to be complete, but is given as a plau-
sible structure illustrating the importance of the multi-level represen-
tations produced by the grounding networks discussed in this paper.
First we will discuss some efforts at using neural networks to ground
symbolic representations after which we will elaborate on the issues
in the above list.

Neural networks and propositional logic

Modified back-propagation networks may be used to create de-
scriptions in propositional logic. These networks are based on the
fact that the various logical connectives may be represented alge-
braically. For example,p! q would be in algebraic form1�p+pq,
with 1 representing true and 0 representing false. In these networks,
the output neurons each have weights corresponding to the constants
in the algebraic from of an expression in propositional logic. Suit-
able terms added to the error function cause these weights tocon-
verge to a valid logical formula as training proceeds. The layer be-
low the output neurons is thepropositionallayer, where each neu-
ron represents a propositional variable. This method is discussed at
length in (Horvitz & Bhatnagar 2003).

These methods are of limited usefulness due to the weak repre-
sentational power of propositional logic. In particular, it doesn’t do
anything to help the lack of systematicity attributed to neural net-
works.

Neural networks and predicate logic

These methods can be extended in a straight forward way to pro-
duce descriptions in predicate logic. In this scheme the propositional

1



layer of the network now becomes thepredicate layer. The layer be-
low the predicate layer is theobject layer, where groups of one or
more neurons are taken to represent objects. A network of this type
is illustrated in figure 1.

x y z

P1(x) P2(x,y) P3(y) P4(x,y,z) P5(x,z) P6(y,z) P7(z)

a0 + a1P(x) + a2P2(x,y) + a3P3(y) + a4P(x,y,z) + a5P(x,z) + a6P(y,z) + a7P(z)

(fully connected layers)

Input

Figure 1: Network for producing predicate logic de-
scriptions

In this network the object layer and the predicate layers arenot
fully connected. Instead, each predicate neuron only sees input from
the appropriate objects. As before, terms are added to the error func-
tion to encourage the outputs of the predicate neurons to take values
close to 0 or 1. In this way, after training the weights connecting the
output neurons to the predicate neurons will correspond to alogical
connective, and the meanings of the predicate neurons and object
neurons will be grounded in the weights below them.

This idea is flawed, however, as it does not sufficiently capture
the concept of object. Some reasons that we recognize and name
objects include

1. Objects exist independently of their perceptual background.

2. Objects persist in time. As our visual field changes (I speak of
vision, but this applies to any of the senses), either through or
own motion or changes in that which we are viewing, we can
often still find that which we designate as an object.

3. Objects, perhaps in combination with other objects, have
causal significance.

4. Objects recur in experience.

The plan described above for producing descriptions in predicate
logic captures the fourth point here, as the system will identify as ob-
jects things that appear in multiple training examples. However, it
fails on the the other points. In this work we are particularly focused
on the first point. The above plan fails here because of its holis-
tic approach to the input, where the neural network sees the entire
scene at once. Back-propagation networks do not generalizewell
when images are scaled or rotated, let alone having major chunks
moved around. The concept of object is closely tied up with the idea
of focus. We can focus on an object and distinguish it from that

which isn’t the object. With this in mind we propose another way to
ground the representation of objects and relationships using neural
networks.

Ideally the system would work as follows. The system has
three functional layers, each working with its neighbor or neigh-
bors. Within each layer is a collection of neural networks. At the
bottom layer the networks act as low level feature detectors. Local
collections of features are then assembled intocandidate objects.
The second layer of networks is a collection ofobject recognizer
networks. Each such network is sensitive to a particular type of
object. It takes a candidate object as input, and if the object rec-
ognizer output is close to 1, then the candidate object is considered
to be an object of that type. The third layer is a vector ofpredicate
networks. For example, the vector might consist of networks repre-
senting the predicatesP1(x); P2(y); P3(x; y); P4(x; z) � � �. Each of
these variables is typed, corresponding to a particular object recog-
nizer network. The meanings of these predicates is formed during
the training process, as are the logical connectives for thepredicate
formula.

The overall flow of the system is shown in figure 2.

Visual primitives

Candidate objects

Images

Object recognizer networks

Predicate networks

Objects

Archive of predicate values Clarity of predicate values

Figure 2: System for producing predicate logic descrip-
tions

This figure represents the system as it exists, with some simplifi-
cation from the ideal method described. The primary simplification
is the preprocessing of images into collections ofvisual primitives,
rather than having online search for objects directly from the image.
Candidate objects are then constructed from groups of one ormore
visual primitive. This pool of candidates is built once whenthe main
learning program starts. Each image is processed once per training
epoch. Each time an image is processed the candidate objectsasso-
ciated with it are evaluated by the object recognizer network.

The system takes the set of objects that have been recognizedby
the object recognizer networks (those that returned the highest ’ob-
jectness’ values) and enumerates all possible permutations of vari-
able bindings in the predicate expression where the object types are
correct. There are two possible methods to pick the best of the vari-
able binding. One method is based on theclarity of the predicate

2



vector. This is defined as:larity =Xi (1� (Pi(1� Pi)))=n
wherePi is the output if theith predicate network. This is a measure
of how close to 0 or 1 all of the predicate networks are. If all of the
networks could output exactly 0 or 1 then the clarity would take its
maximum value of 1.

Alternatively the variable binding which produces the smallest
error may be chosen. The system maintains an archive of the out-
puts of the predicate networks for all of the training examples over
the previous training epoch. If the boolean pattern produced for a
training sample is different from the boolean patterns for all of the
archived examples having no class in common with the currentex-
ample (e.g., for the current experiments, have no characterin the im-
age which is in the current image), then there isn’t any error. Based
on this the error is defined as:E =Xi Yj (1� (Pj �Qij)2)
where i indexes over all members of the archive having no class in
common with the current example, j indexes over the predicate net-
works,Pj is the output of thejth predicate network for the current
example, andQij is the output of thejth predicate network for theith example from the archive. If one predicate in the current exam-
ple differs by exactly one from that predicate in the archive(i.e. for
one example it is true and for the other it is false) then the boolean
patterns are different and there is no error contribution from that
archive example.

The system can save the variable bindings that produced the
clearest result, or the one that produced the smallest error, or it can
save multiple variable bindings, so long the clarity of error is beyond
some threshold value.

For an ideally trained system, the error value would approach 0
and the clarity value would approach 1 and these two methods would
then be equivalent. However, early in the training this is not the case.
For example, each predicate network could output the constant value
of 1, and the clarity would be maximized, but so would the error.

There is no correct response for any of these networks. Instead
they are trained as a kind of self organizing map. The system com-
putes the derivatives�E�Pi for each predicate network, and can adjust
the weights by the usual gradient descent method.

After the binding of objects which produces the clearest result
is found, the predicate networks are trained, after which the object
recognizer networks are trained. The clarity of the resultsof the
predicate networks using objects approved by an object recognizer
network is used to train that object recognizer network. Theidea is
that if the candidate objects approved by the object recognizers are
very good quality, then the predicate networks will produceclear
results. Thus the clarity of a predicate network is a measureof the
’objectness’ of its arguments.

Since the clearest evaluation from the vector of predicate net-
works may involve more than one object of the same type (i.e.,ap-
proved by the same object recognizer) the object recognizers are
trained in batch mode, adjusting their weights once after being
reevaluated for the relevant candidate objects.

There is no explicit representation of the logical connectives in
the derived logical expression characterizing the variousclasses, but
after the system is trained, the actual predicate logic formulas may
be reconstructed from the values in the archive of results over the
last epoch.

There is a possible issue in the treating of negation. For example,
if the form of the predicate expression isP1(x); P2(y); P3(x; y) and
for a particular example we haveP (x) is false, what does that tell
us? Isn’t there always some x such thatP (x) is false? If at the same
timeP3(x; y) is true, then it isn’t an issue, but what happens if that
predicate is also false? On the other hand, for anyP (x) another
predicateQ(x) = :Q(x) may be defined, in which case the issue
does not seem to occur. Is one of these predicates correct in some
sense? The solution is that we should not expect any of the difficult
cases to ever occur.

In the simple experiments we are currently working on, we are
using black and white images of text characters in various fonts as
training data. When using line segments as visual primitives, a point
is selected after which the longest line through that point is found
having the same color as that point. We end up with two types of
primitive, white black, each characterized by its length and angle.
After a large collection of these primitives is found, the set is pruned
with the object of spacing them uniformly over the image.

In using rectangular patches as primitives, a point is selected, af-
ter which the largest rectangle (at any angle) of approximately the
same color as that point which contains the point is found. This
method has several advantages. First, no distinction is made be-
tween black and white primitives and thus the method is more easily
extensible to color images. Second, the data going to the object rec-
ognizer networks is the original image data.

Experiments

We generated a set of training data consisting of charactersin six
different fonts (using the letters A through H), each of a random
font size between point sizes of 42 and 102. In addition they were
rotated at a random angle, between 0 and 360 degrees. Anotherset
of figures was constructed in the same way from a seventh font,to
be used as a test set. Examples are seen in figure 3.

Figure 3: Some examples from the training set.

We have experimented with two types of visual primitives. The
first of these is aline primitive. These are suitable only for black and
white images as the primitives themselves are either black or white.
Each primitive is found by selecting a point in the image and finding
the longest line through that point of the same color as the point.
One problem with this method is that it is difficult to find a good

3



balance between adequately covering the image with primitives and
not having too much duplication. Pruning algorithms which seek to
space the primitives as far apart from each other were of somehelp,
but the problem was not eliminated.

The second type of visual primitive used is thepatchprimitive.
Each patch is an approximation of the largest rectangle around a
point which is of approximately the same color as that point.The
search procedure, which is somewhat time consuming, considers an-
gles at small increments for each point. For each angle the system
attempts to extend the rectangle in each of four directions by one
row of pixels, going around and around until no more extensions are
possible. The system then saves the largest such patch found. The
large number of patch primitives found is reduced first by rejecting
any that are too small in either dimension (with an arbitrarysize
threshold), and removing any patches which are contained inother
patches. This method is more readily extensible to non blackand
white images than are line primitives. In addition, when using the
patch primitives, the various neural networks in the systemsee the
actual pixel data (interpolated as necessary into a fixed input size)
rather than the converted form of data in the line primitives.

The efforts with the line primitives have been abandoned in favor
of the superior patch primitives.

Local clusters of line primitives were assembled into candidate
objects. This could also be done with the patch primitives, but for
simplicity’s sake each patch by itself was taken as a candidate object.
The information seen by the neural networks consists of a tenby ten
array of interpolated pixel data, along with the aspect ratio of the
patch. No information about the absolute size or orientation of the
patch is included. For predicates with two or more variables, infor-
mation is also included about the relative orientation of the patches
and the relative areas of the patches. Again, there is no information
about absolute size or orientation. The result is that recognition of
objects is independent of scaling or rotation. This is a key difference
between this method and the simpler method mentioned earlier of
using neural networks to create descriptions in predicate logic.

Experience has shown that saving (for the archive) the variable
binding(s) giving the lowest errors works much better than saving
the binding(s) giving the clearest results.

It is currently necessary to specify the form of the predicate vec-
tor. Experiments were run with various forms. In one case, five
variables were defined, each of a different type (there are five dif-
ferent object recognizer networks). It is possible for an object to be
accepted by more than one object recognizer network and thusbe of
more than one type. Ten predicates were defined as:P0(v; w; x), P1(v; w; y), P2(v; w; z), P3(v; x; y), P4(v; x; z),P5(v; y; z), P6(w; x; y), P7(w; x; z), P8(w; y; z), P9(x; y; z)

The system was trained until the mean error over an epoch was
less than or equal to .001. The system was not making any classi-
fication errors on the training data. The test set was then evaluated.
The results in this case were only moderately good, with two errors
in eight cases. This seems to be a case of over-training, as earlier
when the training error was only down to .0087, there were no test
set errors (the test set was evaluated periodically). In anycase, ten
predicates were really too many and led to complex characteriza-
tions of the data. For example, the character ’A’ was defined byP2(v; w; z) ^ ((P8(w; y; z) ^ P9(x; y; z) ^ :P3(v; x; y)) _(P7(w; x; z) ^ :P5(v; y; z) ^ :P9(x; y; z) ^ :P8(w; y; z))

the letter ’F’ was described by the formula:P3(v; x; y) ^ P7(w; x; z) ^ :P9(x; y; z) ^ (:P6(w; x; y) _:P5(v; y; z)
Figure 4 shows the objects the system found used to recognizethe
characters illustrated earlier. Each rectangle represents a patch prim-
itive, not drawn as the actual pixel pattern, but only as a rectangle of
the mean color of the patch. In the first two cases the patches bring
the character to mind, in the case of the ’G’ it is more of a stretch,
but plausible considering the task is only to distinguish itfrom the
other letters between ’A’ and ’H’.

Figure 4: Objects used to recognize characters.

Open questions and next steps

There are several parameters in the system which have been assigned
arbitrary values. These include the learning rates for the object rec-
ognizer networks and the predicate networks, a suitable error goal
which will optimize generalization, the number and type of vari-
ables, the predicate form, the threshold of error or clarityfor archiv-
ing variable bindings, and the number of objects that each object
recognizer should retrieve. All of these issues require significant
exploration.

In addition, the system needs to be applied to more interesting
input. This will first include images containing multiple characters
and then more complex color images. This will require eithermod-
ifications of the visual primitive extraction method, or theaddition
of another layer of networks which will search for primitives.

Cognitive architecture

Symbols are not only useful for communication but are neededfor
understanding the world. Symbols are the lines we use to segment
our representational world. If our only symbols were the tokens we
use in language, then the grounding process would simply involve
mapping these symbols to the world of experience, but when we
take symbols as having much greater usefulness it is necessary for
the system to create and ground its own symbols.

As indicated in the previous section, we view symbols as emerg-
ing from neural processing of non-symbolic information. Inthese

4



networks, the output of the top two layers of neurons are taken as
symbolic representations. The system moves the focus of itseyes
(or whatever sensors are at its disposal), searching for recognizable
objects and relationships. In this way, the neural networksare used
as probes into the external world. If the object recognizer networks
return values close to 1, indicating they have found an object, then
a multi-level representation of that object is added to the activation
of any relevant situations. The multi-level representation includes
all values currently on any node of the neural network, from the
non-symbolic (and specific) representation on the input terminals
through the symbolic (and general) representation at the predicate
neurons.

By situation we mean a collection of objects and relationships
among those objects that commonly occur together, and have some
causal significance. Within each situation exist another collection
of neural networks, which learn the temporal/causal relationships
between these multi-level representations. These networks take as
input multi-level representations, both of cause and effect, and a time
difference, and return a probability. Networks that work like the
predicate grounding networks may also be used, either to ground
new objects and relationships as causes or effects. In each case,
weight decay should be promoted for the lower level levels ofthese
networks, with the aim of achieving symbolic understanding.

Examples of situations might be ’driving a car down the street’
or ’reading email’. As the objects and goals in each are different, by
this kind of separation problems are kept to a manageable size.

The activation of a situation based on the occurrence of objects or
relationships belonging to it may also be represented as a predicate.
Thus a situation arising may be a fact noted in other situations. If
the system is planning within an active situation, these situations
represented as predicates may be considered as subtasks.

Some situations may work in a mode which is virtually un-
grounded, almost completely at a symbolic level, such as in doing
mathematics.

Memories of specific events may also be at multiple levels, from
the non-symbolic to the symbolic. The structure outlined here gives
the opportunity to explore the interplay of these levels. For exam-
ple, in humans, producing a symbolic description of a memorywill
sometimes block the non-symbolic memory, sometimes resulting in
poorer performance (Melcher & Schooler 1996). Why this might
occur could be investigated in the setting suggested here.

Obviously this presentation is lacking in detail and leavesmany
issues unexplored. We are hoping that it is the plausible beginning of
a cognitive architecture, and that as such it illustrates the importance
of multi-level representations, and the methods of grounding objects
and relationships presented here.

References

Chalmers, D. 1990. Why fodor and pylyshyn were wrong: The
simplest refutation.Proceedings of the Twelfth Annual Conference
of the Cognitive Science Society340–347.

Fodor, J., and Pylyshyn, Z. 1988. Connectionism and cognitive
architecture: A critical analysis.Cognition28:3–71.

Harnad, S. 1990. The symbol grounding problem.Physica D
42:335–346.

Harnad, S. 2002.Views into the Chinese Room. Oxford University
Press. 294–307.

Horvitz, R., and Bhatnagar, R. 2003. Neural symbol grounding.
Proceedings of the 14th Midwest Artificial Intelligence andCogni-
tive Science Conference.

Jung, D., and Zelinsky, A. 2000. Grounded symbolic commu-
nication between heterogeneous cooperating robots.Autonomous
Robots8:269–292.

Melcher, J. M., and Schooler, J. W. 1996. The misrememberance
of wines past: Verbal and perceptual expertise differentially me-
diate verbal overshadowing of taste memory.Journal of Memory
and Language35(2):231–245.

Plate, T. 1995. Holographic reduced representations.IEEE Trans-
actions on Neural Networks6(3):623–641.

Searle, J. 1980. Minds, brains, and programs.The Behavioral and
Brain Sciences3.

Searle, J. 2002.Views into the Chinese Room. Oxford University
Press. 51–69.

Smolensky, P. 1990. Tensor product variable binding and therepre-
sentation of symbolic structures in connectionist systems. Artificial
Intelligence46(1-2):159–216.

5


