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Abstract

We propose a cognitive architecture which integrates syimbad
connectionist representations. The symbolic representin the
form of predicate logic, emerge from, and are grounded im- no
symbolic experience. This leads to multi-level represiona, both
symbolic and non-symbolic. This architecture is prelinnjnand is
used as motivation for the methods described for groundiedip
cate logic representations in experience.

We first discuss a method of grounding descriptions in priepos
tional logic and how that method might be extended to grousd d
scriptions in propositional logic. This method fails to tae the
idea ofobjectso a more involved method is explored. We then dis-
cuss experimental results.

I ntroduction

Philosophers have pointed out the inadequacies of cldssica
(Searle 1980) and of connectionist systems(Fodor & Pylkyshy
1988). In the first case, strong Al is allegedly refuted tigtothe
Chinese Room thought experiment, which suggests that cemgpu
embody only syntax but not semantics. A solution to this yias
bol grounding has been proposed(Harnad 1990),(Harnad 2062
symbols then are no longer meaningless tokens, but acqeias-m
ing through experience. The debate still rages, and Seadélli
convinced that he has refuted strong Al(Searle 2002). Tareréog-
ical problems with the Fodor and Pylyshyn’s argument, aschbly
Chalmers(Chalmers 1990) but their criticisms are well dofEyp-
ical connectionist systems, other than those contrivedtqumake
the point(Plate 1995),(Smolensky 1990) do not exhibitesysitic-
ity, compositionality, and productivity of thought, whialne features
of symbolic reasoning.

The system can move its focus, evaluating what it senses with
these grounding neural networks, filling out situationshwit
objects and relationships it discovers.

This search is guided by those situations that are currewtly
tive, which suggest the likelihood of particular objectsl ae-
lationships occurring.

e Situations become active by the observation of objectsend r
lationships that belong to them.

e Probes into the external world that successfully find known
objects or relationships return a multi-level represéomadf

that object, both symbolic and non-symbolic.

e Within a situation causal rules are learned (using neural ne

works) using all levels of these multi-level representaio

This model is not intended to be complete, but is given as& pla
sible structure illustrating the importance of the mutti| represen-
tations produced by the grounding networks discussed srpdyper.
First we will discuss some efforts at using neural netwookground
symbolic representations after which we will elaboratelmissues
in the above list.

Neur al networks and propositional logic
Modified back-propagation networks may be used to create de-
scriptions in propositional logic. These networks are Hase the
fact that the various logical connectives may be repredealkge-
braically. For exampley — ¢ would be in algebraic forrh—p+pq,
with 1 representing true and O representing false. In theteanks,
the output neurons each have weights corresponding to ttstasts
in the algebraic from of an expression in propositional dogbuit-
able terms added to the error function cause these weigltsnto
verge to a valid logical formula as training proceeds. Tlyelde-
low the output neurons is tharopositionallayer, where each neu-
ron represents a propositional variable. This method sudised at

As Al systems move toward more human-like activity, such aslength in (Horvitz & Bhatnagar 2003).

with flexible robotic systems, the need for grounding syntoap-
resentations in experience has become clear(Jung & ZglR2G00).
We go beyond this though and argue that such grounding isedeed
not only for communication but is essential for the systeavis
understanding of the world. In this paper we propose owgliofea
cognitive architecture having these features:

e The symbolic representation of the world divides the non-
symbolic world of experience into situations, objects agd r
lationships.

These methods are of limited usefulness due to the weak-repre
sentational power of propositional logic. In particularioesn’t do
anything to help the lack of systematicity attributed to na¢umet-
works.

Neural networks and predicate logic

e Neural networks are used to ground the meaning of symbol§hese methods can be extended in a straight forward way to pro

representing objects and relationships.

duce descriptions in predicate logic. In this scheme thpgsitional



layer of the network now becomes theedicate layer The layer be-  which isn’t the object. With this in mind we propose anothemyto

low the predicate layer is thebject layer where groups of one or ground the representation of objects and relationshipgguséural
more neurons are taken to represent objects. A network®fythe  networks.

is illustrated in figure 1. Ideally the system would work as follows. The system has
three functional layers, each working with its neighbor eigh-
bors. Within each layer is a collection of neural networks. thfe
bottom layer the networks act as low level feature detectoogal
collections of features are then assembled tandidate objects
The second layer of networks is a collectionatfject recognizer
networks. Each such network is sensitive to a particulae tgp
object. It takes a candidate object as input, and if the ol
ognizer output is close to 1, then the candidate object isidered

to be an object of that type. The third layer is a vectop@fdicate
networks For example, the vector might consist of networks repre-
senting the predicate® (z), P (y), Ps(x,y), Pa(z, z) - - -. Each of
these variables is typed, corresponding to a particulaablvgcog-
nizer network. The meanings of these predicates is formeidgiu
the training process, as are the logical connectives foptbdicate

a0 + alP(x) + a2P2(x,y) + a3P3(y) + a4P(x,y,z) + a5P(x,z) + a6P(y,z) + a7P(z)

(fully connected layers) formula.
The overall flow of the system is shown in figure 2.
Input

Images

Visual primitives
Figure 1. Network for producing predicate logic de-

SCI’Ip'[IOﬂS Candidate objects

In this network the object layer and the predicate layersate
fully connected. Instead, each predicate neuron only sg@es from Object recognizer networks
the appropriate objects. As before, terms are added tothefenc-
tion to encourage the outputs of the predicate neurons éovalkies
close to 0 or 1. In this way, after training the weights conimgcthe
output neurons to the predicate neurons will correspondagiaal
connective, and the meanings of the predicate neurons gedtob Predicate networks
neurons will be grounded in the weights below them.

This idea is flawed, however, as it does not sufficiently cagptu
the concept of object. Some reasons that we recognize and nam Archive of predicate values Clarity of predicate v
objects include

Objects

1. Objects exist independently of their perceptual baakgdo

2. Objects persistin time. As our visual field changes (1 kmga  Figure 2: System for producing predicate logic descrip-
vision, but this applies to any of the senses), either thiarg  tions
own motion or changes in that which we are viewing, we can

often still find that which we designate as an object. This figure represents the system as it exists, with someli§imp
3. Objects, perhaps in combination with other objects, havecation from the ideal method described. The primary singaitfon
causal significance. is the preprocessing of images into collectionvigbial primitives

rather than having online search for objects directly fromitmage.
Candidate objects are then constructed from groups of oneoe
The plan described above for producing descriptions inipaéel  visual primitive. This pool of candidates is built once wiika main
logic captures the fourth point here, as the system willtifieas ob- learning program starts. Each image is processed oncegieinty
jects things that appear in multiple training examples. Elav, it  epoch. Each time an image is processed the candidate ohjistis
fails on the the other points. In this work we are particyldocused  ciated with it are evaluated by the object recognizer networ
on the first point. The above plan fails here because of its-ol The system takes the set of objects that have been recognized
tic approach to the input, where the neural network seesritieee  the object recognizer networks (those that returned thieelsiyob-
scene at once. Back-propagation networks do not genenablle  jectness’ values) and enumerates all possible permusatibmari-
when images are scaled or rotated, let alone having majatkshu able bindings in the predicate expression where the ohjpestare
moved around. The concept of object is closely tied up wighidlea  correct. There are two possible methods to pick the besteofdhi-
of focus. We can focus on an object and distinguish it front tha able binding. One method is based on tharity of the predicate

4. Objects recur in experience.



vector. This is defined as:

clarity = Z(l - (Pi(1 = P)))/n

i

whereP; is the output if the*® predicate network. This is a measure
of how close to 0 or 1 all of the predicate networks are. If the
networks could output exactly O or 1 then the clarity woulkktits
maximum value of 1.

Alternatively the variable binding which produces the desdl

There is a possible issue in the treating of negation. Fanpie
if the form of the predicate expressionfs(z), P2(y), P3(z,y) and
for a particular example we have(x) is false, what does that tell
us? Isn’t there always some x such ti#4i) is false? If at the same
time Ps(z, y) is true, then it isn’t an issue, but what happens if that
predicate is also false? On the other hand, for &fy:) another
predicate(z) = —Q(z) may be defined, in which case the issue
does not seem to occur. Is one of these predicates correctria s
sense? The solution is that we should not expect any of tfieudif

error may be chosen. The system maintains an archive of the oucases to ever occur.

puts of the predicate networks for all of the training exaespver
the previous training epoch. If the boolean pattern prodioe a
training sample is different from the boolean patterns fbofthe
archived examples having no class in common with the cueent
ample (e.g., for the current experiments, have no chararctee im-
age which is in the current image), then there isn't any eBased
on this the error is defined as:

E= Z H(l — (P~ Qij)*)

where i indexes over all members of the archive having ncdlas
common with the current example, j indexes over the preelinat-
works, P; is the output of thg'*" predicate network for the current
example, and);; is the output of thg*" predicate network for the
it" example from the archive. If one predicate in the currentrexa
ple differs by exactly one from that predicate in the arcl{ive for
one example it is true and for the other it is false) then theldam
patterns are different and there is no error contributiamfrthat
archive example.

The system can save the variable bindings that produced the

clearest result, or the one that produced the smallest, emdrcan
save multiple variable bindings, so long the clarity of eisdeyond
some threshold value.

For an ideally trained system, the error value would appgrdac
and the clarity value would approach 1 and these two methodiw
then be equivalent. However, early in the training this isthe case.
For example, each predicate network could output the cotgidue
of 1, and the clarity would be maximized, but so would the ierro

There is no correct response for any of these networks. ddste
they are trained as a kind of self organizing map. The systam c
putes the derivativeg% for each predicate network, and can adju
the weights by the usual gradient descent method.

After the binding of objects which produces the clearestiltes
is found, the predicate networks are trained, after whiehdbject
recognizer networks are trained. The clarity of the resoftthe
predicate networks using objects approved by an objecgrezer
network is used to train that object recognizer network. itlea is
that if the candidate objects approved by the object recegsiare
very good quality, then the predicate networks will prodatear
results. Thus the clarity of a predicate network is a meastithe
‘objectness’ of its arguments.

Since the clearest evaluation from the vector of predicate n
works may involve more than one object of the same type éfe.,
proved by the same object recognizer) the object recogniaer
trained in batch mode, adjusting their weights once aftenghe
reevaluated for the relevant candidate objects.

There is no explicit representation of the logical connestiin
the derived logical expression characterizing the varaasses, but
after the system is trained, the actual predicate logic fbasmay
be reconstructed from the values in the archive of resulés the
last epoch.

In the simple experiments we are currently working on, we are
using black and white images of text characters in varionssfas
training data. When using line segments as visual pringtiggoint
is selected after which the longest line through that parfound
having the same color as that point. We end up with two types of
primitive, white black, each characterized by its lengtk angle.
After a large collection of these primitives is found, théisgruned
with the object of spacing them uniformly over the image.

In using rectangular patches as primitives, a point is seteaf-
ter which the largest rectangle (at any angle) of approxégeathe
same color as that point which contains the point is foundis Th
method has several advantages. First, no distinction issnbad
tween black and white primitives and thus the method is maséye
extensible to color images. Second, the data going to thecbigc-
ognizer networks is the original image data.

Experiments

We generated a set of training data consisting of charatiesix
different fonts (using the letters A through H), each of ad@n
font size between point sizes of 42 and 102. In addition theyew
rotated at a random angle, between 0 and 360 degrees. Arsather
of figures was constructed in the same way from a seventh tiont,
be used as a test set. Examples are seen in figure 3.

Figure 3: Some examples from the training set.

We have experimented with two types of visual primitiveseTh
first of these is &ine primitive. These are suitable only for black and
white images as the primitives themselves are either blazkhde.
Each primitive is found by selecting a point in the image andifig
the longest line through that point of the same color as thetpo
One problem with this method is that it is difficult to find a gloo



balance between adequately covering the image with pviesitand
not having too much duplication. Pruning algorithms whieblsto
space the primitives as far apart from each other were of swipe
but the problem was not eliminated.

The second type of visual primitive used is th&tch primitive.
Each patch is an approximation of the largest rectanglenarau
point which is of approximately the same color as that poirtie
search procedure, which is somewhat time consuming, cerssigh-
gles at small increments for each point. For each angle thesy
attempts to extend the rectangle in each of four directignerie
row of pixels, going around and around until no more extamsere
possible. The system then saves the largest such patch. fauned
large number of patch primitives found is reduced first bgetng
any that are too small in either dimension (with an arbitraige
threshold), and removing any patches which are containethier
patches. This method is more readily extensible to non béack
white images than are line primitives. In addition, whemgstihe
patch primitives, the various neural networks in the systes the
actual pixel data (interpolated as necessary into a fixedtisge)
rather than the converted form of data in the line primitives

The efforts with the line primitives have been abandone@woif
of the superior patch primitives.

Local clusters of line primitives were assembled into ceaté
objects. This could also be done with the patch primitives,for
simplicity’s sake each patch by itself was taken as a catelmlzgiect.
The information seen by the neural networks consists of aydan
array of interpolated pixel data, along with the aspecorafithe
patch. No information about the absolute size or orientagibthe
patch is included. For predicates with two or more varialilger-
mation is also included about the relative orientation efplatches
and the relative areas of the patches. Again, there is noniraftion
about absolute size or orientation. The result is that neitiop of
objects is independent of scaling or rotation. This is a kffgrénce
between this method and the simpler method mentioned eaflie
using neural networks to create descriptions in predicagie|

Experience has shown that saving (for the archive) the biaria
binding(s) giving the lowest errors works much better thavirgy
the binding(s) giving the clearest results.

It is currently necessary to specify the form of the prediocadc-
tor. Experiments were run with various forms. In one case fiv
variables were defined, each of a different type (there aeedif#
ferent object recognizer networks). It is possible for ajecbto be
accepted by more than one object recognizer network ancbthas
more than one type. Ten predicates were defined as:

Po(v,w,z), Pr(v,w,y), P2(v,w,2), P3(v,z,y), Pa(v, , 2),
P5(v,y,2), Ps(w, z,y), Pr(w,x, 2), Ps(w,y,2), Po(z,y, 2)

the letter 'F’ was described by the formula:

Py(v,2z,y) A Pr(w,z,2) N ~Py(z,y,2) A (=Ps(w, z,y) V
—P5(v,y, 2)

Figure 4 shows the objects the system found used to recogreze
characters illustrated earlier. Each rectangle represepatch prim-
itive, not drawn as the actual pixel pattern, but only as taregle of
the mean color of the patch. In the first two cases the patafieg b
the character to mind, in the case of the 'G’ it is more of atelre
but plausible considering the task is only to distinguisfidtn the
other letters between 'A and 'H'.

Figure 4: Objects used to recognize characters.

Open questions and next steps

There are several parameters in the system which have beigned
arbitrary values. These include the learning rates for tijeab rec-
ognizer networks and the predicate networks, a suitabte goal
which will optimize generalization, the number and type afiv
ables, the predicate form, the threshold of error or cldatyarchiv-
ing variable bindings, and the number of objects that eagbcob
recognizer should retrieve. All of these issues requiraii@ant
exploration.

In addition, the system needs to be applied to more integsti
input. This will first include images containing multiplearacters
and then more complex color images. This will require eithed-
ifications of the visual primitive extraction method, or thedition
of another layer of networks which will search for primitsre

The system was trained until the mean error over an epoch was

less than or equal to .001. The system was not making anyi-class

fication errors on the training data. The test set was theluateal.
The results in this case were only moderately good, with twore
in eight cases. This seems to be a case of over-training,rbsrea
when the training error was only down to .0087, there wereesb t
set errors (the test set was evaluated periodically). Incase, ten
predicates were really too many and led to complex chaiaater
tions of the data. For example, the character ‘A was defined b

Pa(v,w,2) A (Pa(w,y,2) A Pa(,y, 2) A ~Pa(v,2,3)) V
(Pr(w,,2) A=Ps(v,y,2) A ~Pa(,y,2) A ~Ps(w,y, 2))

Cognitive architecture

Symbols are not only useful for communication but are nedded
understanding the world. Symbols are the lines we use toesgm
our representational world. If our only symbols were thestukwe
use in language, then the grounding process would simpblvav
mapping these symbols to the world of experience, but when we
take symbols as having much greater usefulness it is negessa
the system to create and ground its own symbols.

As indicated in the previous section, we view symbols as gmer
ing from neural processing of non-symbolic information. these



networks, the output of the top two layers of neurons arentase
symbolic representations. The system moves the focus elés
(or whatever sensors are at its disposal), searching fogrezable
objects and relationships. In this way, the neural netwarksused
as probes into the external world. If the object recognizgworks
return values close to 1, indicating they have found an opfben
a multi-level representation of that object is added to ttevation
of any relevant situations. The multi-level representaiitcludes
all values currently on any node of the neural network, frém t
non-symbolic (and specific) representation on the inpuhiteals
through the symbolic (and general) representation at tadigate
neurons.

By situation we mean a collection of objects and relatiopshi
among those objects that commonly occur together, and lwawe s
causal significance. Within each situation exist anothdection
of neural networks, which learn the temporal/causal retetiips
between these multi-level representations. These nesiake as
input multi-level representations, both of cause and &ffex a time
difference, and return a probability. Networks that wotkelithe
predicate grounding networks may also be used, either tongro
new objects and relationships as causes or effects. In eessh c
weight decay should be promoted for the lower level levelhese
networks, with the aim of achieving symbolic understanding

Examples of situations might be 'driving a car down the gtree
or 'reading email’. As the objects and goals in each are diffg by
this kind of separation problems are kept to a manageal#e siz

The activation of a situation based on the occurrence ottbj
relationships belonging to it may also be represented asdigate.
Thus a situation arising may be a fact noted in other sitnatidf
the system is planning within an active situation, theseasibons
represented as predicates may be considered as subtasks.

Some situations may work in a mode which is virtually un-
grounded, almost completely at a symbolic level, such aingd
mathematics.

Memories of specific events may also be at multiple levetsnfr
the non-symbolic to the symbolic. The structure outlinecetgves
the opportunity to explore the interplay of these levelsr &am-
ple, in humans, producing a symbolic description of a memwdHty
sometimes block the non-symbolic memory, sometimes iaguh
poorer performance (Melcher & Schooler 1996). Why this migh
occur could be investigated in the setting suggested here.

Obviously this presentation is lacking in detail and leavesy
issues unexplored. We are hoping that it is the plausiblenbéwy of
a cognitive architecture, and that as such it illustratesriportance
of multi-level representations, and the methods of graumabjects
and relationships presented here.
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