Mining High Dimensional Data for Classifier Knowledge

Raj Bhatnagar
ML-0030 ECECS Department
University of Cincinnati
Cincinnati, OH 45221

Raj.Bhatnagar@uc.edu

ABSTRACT

We present in this paper the problem of discovering sets
of attribute-value pairs in high dimensional data sets that
are of interest not because of co-occurrence alone, but due
to their value in serving as cores for potential classifiers of
clusters. We present our algorithm in the context of a gene-
expression dataset. Gene expression data, in most situa-
tions, is insufficient for clustering algorithms and any statis-
tical inference because for 6000+ genes, typically only 10s
and at most 100s of data points become available. It is dif-
ficult to use statistical techniques to design a classifier for
such immensely under-specified data. The observed data,
though statistically, insufficient contains some information
about the domain. Our goal is to discover as much informa-
tion about all potential classifiers as possible from the data
and then summarize this knowledge. This summarization
provides insights into the composition of potential classi-
fiers. We present here algorithms and methods for mining a
high dimensional data set, exemplified by a gene expression
data set, for mining such information.

Categories and Subject Descriptors

1.5.2 [Pattern Recognition]: Classifier Design and Evalu-
ation

Keywords

High Dimensional Data, Pattern Recognition

1. INTRODUCTION

Most mining algorithms seek to discover frequently co-
occurring sets of attribute-value pairs in a large database.
Many high-dimensional data sets need to address the prob-
lem of classifying or clustering their data tuples. Such data
sets are typically under-constrained from the perspective of
inferring class boundaries with significant confidence levels.
In such situations one can find a very large number of possi-
ble classifiers that separate the possible classes. These clas-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SGKDD 03, August 24-27, 2003, Washington, DC, USA

Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

Goutham Kurra
ML-0030 ECECS Department
University of Cincinnati
Cincinnati, OH 45221

gkurra@ececs.uc.edu

Wen Niu
ML-0030 ECECS Department
University of Cincinnati
Cincinnati, OH 45221

wniu@ececs.uc.edu

sifier boundaries are not backed by statistically sufficient
data and therefore lack confidence. However, these large
number of possible classifiers may contain some frequently
occurring sets of attribute-value pairs. These smaller sets of
attribute-value pairs are not sufficient to work as full fledged
classifiers but are valuable “cores” that point towards the
constitution of potential classifiers. These cores are all the
knowledge that can be discovered in an under-specified high-
dimensional data set and can be used to decide what more
data needs to be acquired by planning future experiments.
We address the above problem in the context of a gene ex-
pression data set which is typically very high dimensional
and also under-specified. DNA micro-array technology has
enabled researchers to simultaneously monitor the expres-
sion levels of thousands of genes. Micro-array data, repre-
sents the transcription levels of genes in cells under different
conditions, processes or treatments. This information is in-
valuable in understanding gene function, inter-gene depen-
dencies and underlying biological processes[5, 6, 7].

There has been a lot of interest in classifying using large
dimensional data [6, 9, 1, 8]. It has been shown that gene
expression data acquired from leukemia patients can be used
to build predictors that can discriminate between two acute
leukemia subtypes, acute lymphoblastic leukemia (ALL),
and acute myeloid leukemia (AML) [1]. Subtypes of acute
leukemia, ALL and AML, have similar histopathological ap-
pearance. Correct prediction of the subtype of cancer at an
early stage from gene expression data can vastly improve
the accuracy of diagnosis and effectiveness of treatment.
Currently, no single test is sufficient to make a diagnosis
- leukemia classification still remains imperfect. Based on
gene expression data collected from 72 patients suffering
from either ALL or AML, it has been shown [1] that a large
number of genes (approximately 1100) have higher correla-
tions with the AML/ALL distinction than can be expected
by chance. Classifiers built with small subsets of these genes,
selected based upon their individual correlations with the
cancer subtypes, have been used to predict the leukemia
subtype with some accuracy. Since there is limited knowl-
edge about the functional relevance of most genes, and a
strong possibility exists of noise and biasing by inter-gene
dependencies and gene interactions, the selection of a set
of genes that constitute a good and biologically meaningful
classifier is very important. What genes should be chosen to
form a classifier and how many genes should be included are
two important issues in designing a classifier. Answers to
these questions must take into consideration computational
tractability, robustness against noise, inter-gene dependen-

cies, and dimensionality of the dataset.

2. EXPLORATORY ANALYSIS OF DATA

Most statistical pattern recognition methods require an
abundance of data in order to generate inferences with suf-
ficient confidence. Typically, a dataset on which statisti-
cal methods would be relevant consists of a large number
(upwards of 1000s) of data points and very few variables
(order of 10s) being measured for each data point. In the
case of gene expression datasets, each data point consists of
a few thousand measured variables (genes) and a few (or-
der of 10s) data points. An exploratory analysis of such a
dataset requires that we generate a large number of plausible
hypotheses (good classifiers, in our case here) and examine
them. Any inference of high confidence can be based only on
its consistency with a large fraction of plausible hypotheses.
This approach for discovering knowledge from under speci-
fied data sets is adopted by us in the methodology outlined
below.

2.1 Set of Plausible Classifiers

The complete space of possible classifiers, each member
of which discriminates the class ALLs from AMLs, consists
of all possible subsets of the observed genes (which number
6000+), and a weight vector associated with each subset.
This space of classifiers is intractably large. Some traditional
approaches are based upon the identification of eigenvectors
of the covariance matrix. The directions of the eigenvectors
are not necessarily the optimal discriminators for the classes,
and these directions in the sample space are even less rele-
vant given that they represent about 38 samples in a 6000+
dimensional space. (The ALL/AML training dataset con-
sists of only 38 cases [1])

We adopt a strategy that works in the following two phases.

During the first phase we use a heuristic search to identify
a large number of small-sized subsets of genes that discrimi-
nate between classes better than other similar sized subsets.
During the second phase we train these classifiers by find-
ing suitable weight vectors to optimize the discrimination
potential of each subset. From a relatively large population
of such trained classifiers we select a subset of the better
performing individual classifiers.

2.2 Cores: Frequent Patterns in Classifiers

To glean insight from a large set of well-performing classi-
fiers, we introduce an algorithm to mine or extract cores of
genes from the set of classifiers. We define a core as a sub-
set of genes that is an integral part of several distinct good
classifiers. The strength of a core is defined by the num-
ber of candidate classifiers in which the core appears. The
presence of many such different cores across many different
classifiers can indicate that there may be several different
processes leading to the ALL/AML distinction. A core itself
is an indication that the genes constituting it are strongly re-
lated, at least in the context of the processes leading to the
ALL/AML distinction. The examination of cores 'mined’
by our algorithm can lead to a better understanding of the
workings of the genome with respect to tumors.

2.3 The Leukemia Dataset

The leukemia dataset we have used for our tests is de-
scribed in [1]. This dataset consists of 72 samples obtained
from acute leukemia patients at the time of diagnosis. The

training set consists of 38 bone marrow samples (27 ALL, 11
AML) and the independent (testing) set consists of 34 sam-
ples (20 ALL, 14 AML). The samples were selected randomly
based on availability and are from bone marrow, peripheral
blood, childhood and adult cases, etc. Each sample consists
of expression level data generated for 6817 human genes by
micro-arrays from Affymetrix.

3. METHODOLOGY AND ALGORITHMS

Feature selection or classifier design is a well studied prob-
lem [2, 4]. The goal is to reduce dimensionality, increase
computational efficiency and increase accuracy of classifica-
tion. We define a k-dimensional feature-set as a subset of k
genes, F = {g1,92, ..., gx } selected from those n genes gi..gn
for which expression data is available. A classifier G is a
feature-set combined with a corresponding set of weights
{w1,.., wr} that helps discriminate between two (or more)
classes. Every feature set of size k is associated with a vec-
tor E= {e1, es, ..., ex } of expression levels observed in a sam-
ple. There are 72 expression vectors representing 72 differ-
ent samples for each and every feature set in the leukemia
database. A sample represented by the expression levels E
corresponding to the genes in the feature set F' can be re-
garded as a point in a k-dimensional space.

There are two problems associated with feature selection
on gene-expression data. First, it is difficult to screen fea-
tures based on their functions, since the functionalities of
most genes in biological processes are either unknown or
only partially known. Second, it can be misleading to eval-
uate features for inclusion in a classifier based on individual
merit, since genes usually work in groups to regulate bio-
logical processes, and since the correlation between any two
genes may vary from one process to another. Thus, the
features of interest are most likely small sets of highly inter-
dependent genes.

Feature selection algorithms are typically sequential (hill-
climbing), exponential or randomized. Exponential algo-
rithms (branch and bound, exhaustive) have complexity of
O (2*%) where k is the number of features, and are computa-
tionally prohibitive for large feature sets. Sequential algo-
rithms have polynomial complexity (O (k?)) and are widely
used. The general strategy is to add or subtract features
and follow a hill-climbing approach. However, in a sequen-
tial search, the optimal solution is not guaranteed.

3.1 Search Algorithm

Our algorithm is based on the A™ heuristic search algo-
rithm and it searches the space of all subsets of the complete
feature (gene) set. Using a heuristic measure, the algorithm
prunes badly performing branches and retains good subsets,
as the size of the subsets is slowly reduced. This algorithm is
of polynomial time complexity. The heuristic function eval-
uates the performance of a feature subset - it measures the
class-seperation strength of the feature set and is critical to
the performance of the algorithm.
An outline of the feature selection algorithm is as follows:
1. Initialize the starting level feature-set G with all genes
in the sample space S.

2. Loop until the number of genes per feature-set reduces
to the cut-off size C.

3. For each feature-set G with N genes in the previous
level, generate N subsets G1...Gn with (N — 1) genes
each, by shaving off one gene at a time.

4. For each feature-set G1...Gn compute the performance
metric J (see next section) using the evaluation func-
tion.

5. Save the top T and bottom B performing feature-sets
according to the J criteria for the next level.

6. Update T and B for next level.
7. End Loop [2-6].

T and B are numbers that determine how many feature
set nodes from the search tree are to be expanded. T denotes
the number of feature sets with the best performance and B
denotes the number of those with bad performance. These
are given as parameters to the program, but are modified
during program execution. Both T and B are increased
gradually as the number of feature sets increase. 7" and B
are coded as absolute numbers of feature sets to expand,
steadily increasing with the depth level of the search tree.

The rationale behind choosing the top 7' and bottom B
sets is as follows. Consider the Backward Sequential Search
[2, 4] algorithm where only the best node is expanded at ev-
ery stage. This is done because there is a good probability
that the optimal solution will be along the branch whose par-
ent node’s performance is best. If we increase the number of
nodes that are expanded, we increase the chances of finding
the optimal solution. Since the better performing the node,
the better the chances of finding the optimal solution along
that route, we choose the top T nodes. The gain due to in-
creasing T follows a diminishing returns curve, so we should
select a T that is a good tradeoff between efficiency and
thoroughness. On the other hand, by looking at the bottom
B classifiers, we not only ensure the persistence of feature
sets that may look bad at a higher dimensional stage, and
yet might hold promise upon the shaving off of noisy genes,
but also provide a useful set of classifiers to compare and
contrast against the better performing set while doing the
composition analysis.

3.2 Heuristic Evaluation of Classifiers

The classifier evaluation function takes a feature set as
input and outputs a quantitative performance measure for
that feature set. The metric is the projected strength of a
classifier constructed from that feature-set in distinguishing
between the classes. Many metrics were considered for this
purpose, and their merits were weighed against computa-
tional efficiency.

We found that two good class-separability metrics that
are computationally friendly are the scatter matrices: Sp
(Between-class scatter matriz) and S, (Within-class scatter
matriz). These k x k matrices reflect the way sample points
are clustered in a k-dimensional feature space (where k is the
number of genes constituting a classifier). The scalar metric
trace(Sp) is a measure of the average distance of the means
of each individual class from the respective global value.
It takes large values when the classes (centroids) are well
separated, and small values when they are close together.
On the other hand, trace(Sy) is a measure of the average,
over all classes, variance of features. It takes small values
when the classes are close together, and large values when
they are spread out. They are calculated as follows: S, =
Ei]\il P;S;

where M is the number of classes (2 in our case), P; is
the a prior: probability of class w; and S; is the covariance
of the class w;. S; = E[(x — ps)(z — p;)”] where z is the

expression vector and p; is the mean of all feature vectors
in class w;. Sp = Efil P; (i — po) (s — po)”

where po is the global mean (all classes) feature vector

M
po=32;" Pip

For the classifier evaluation function we use the metric
J = trace(Sy)

T trace(Sw)

J gives high merit to those clusters that are compact
within each class, and at the same time are well separated
between different classes. This is the expectation from an
ideal classifier. Thus, by evaluating the branches of the
search tree and choosing those that have a higher J value
for expansion, we automatically ensure that the search space
is largely reduced to include mainly those combinations of
genes that are potentially good classifiers.

3.3 Training of Linear Classifiers

Each feature-set, identified by the search as a potentially
good class-predictor, is ultimately a linear classifier. The
weights associated with the feature-set need to be trained to
orient the hyper-plane of separation in k-dimensional space
to best classify the samples. This is done using a pocket vari-
ant of the perceptron algorithm, which is especially suited
for linearly separable classes, suggested in [3]. Unlike the
original perceptron training algorithm which does not guar-
antee convergence for classes that are not linearly separable,
the pocket algorithm always converges to the optimal solu-
tion, that is, the one that produces the least number of mis-
classifications [3]. The unmodified perceptron has been tried
in [9] without any consideration for prior feature-selection,
and its performance was found to be disappointing. The ex-
cellent results we achieve using the perceptron is a validation
of our prioritized feature-selection approach.

An outline of this algorithm is as follows:

1. Associate a k-dimensional vector X with the k-dimensional

classifier G (where k is the number of genes in the
feature-set G) for every sample. X consists of the
expression values of the sample (e, es,...,ex) corre-
sponding to each gene (g1, g2, ..., gx) in G.

2. Initialize a weight vector Wy randomly. Define a stored
(pocket) weight vector Ws. Set a history counter Hj
of the W to 0.

3. Begin Loop.

4. At the " iteration step compute the update Wit1,
according to the perceptron rule: Wiy1 = Wi - p*
Error(X)
where p is the learning rate, and Error(X) is the sum-
mation of all the misclassified vectors X. A vector X
is misclassified if it satisfies the following criteria:
W'-X > 0 and X belongs to Class 2 (AML) (or)

W'-X < 0 and X belongs to Class 1 (ALL)
5. Use the updated weight vector to test the number H

of training vectors that have been correctly classified.
If H > H, then replace W, with W;y; and H; with

H, else exit the loop.
6. End Loop.

This algorithm is used to train classifiers G; from feature-
sets F; by finding corresponding weight vectors W;. Predic-
tion of the cancer class of an unknown sample m is based
on the following rule:

If X,, is the k-dimensional vector of expression values as-
sociated with the unknown sample m, and X,, corresponds
with G; in gene composition, then

If W} - X,, > 0 then m is an AML sample, otherwise m is
an ALL sample.

3.4 Mining Cores from Classifiers

Once we have a set of distinct classifiers that can discrim-
inate between the two classes, it would be useful to analyze
the compositions of these classifiers to gain deeper insights
into the roles of various subsets of genes. Specifically, we
would like to see if there are any patterns in the composi-
tion of the classifiers, and whether some features frequently
come in groups (indicating strong gene-dependencies). We
have developed an O(n?) algorithm to mine such cores from
any set of n (of the order of thousands in our current tests)
classifiers produced by our feature selection algorithm. An
outline of this algorithm is presented below:

Let SMALLEST and LARGEST be the desired cardi-
nalities of the smallest and largest core sets of interest.

1. Initialize an array G(1...n) of n classifiers of different

sizes

2. Do (loop)

3. Initialize an empty array of sets, P, and set the number
of cores mined, ¢ to 0
Initialize an array IntersectFlag(n)tofalse
fori=1ton—1,forj=¢+1ton
let R = G() N G(5)
if SMALLEST < size(R) < LARGEST and R ¢ P
then P(c) = Rjc=c+1;

IntersectFlag(i) = InstersectFlag(j) = true
8. next j, next ¢
9. Let P() C Cores ; G() + P();n = size(G())
10. if IntersectFlag(xz) = true for some z then G(z) €
Cores
11. While ¢ <> 0

NS o

The output of the algorithm is the array Cores which
contains all the minimal sets of genes that are common to
many classifiers. It may be useful to remove all those cores
which appear in less than a predetermined number of clas-
sifiers. The strength of each core is determined by counting
the number of its occurrences in the classifier list. This is an
exploratory mining technique that can be useful to domain
specialists looking for information that on gene function and
gene interaction.

4. TEST RESULTS AND DISCUSSION

We have two goals for our methodology. The first is the
generation of a set of small sized feature-sets that would
work well in classifying the samples. The second goal is to
obtain meaningful insight from the potentially large set of
classifiers themselves, by discovering patterns in the sets of
genes that compose these classifiers.

While seeking the first goal, we found many classifiers
with excellent discrimination performance, including classi-
fiers that separate the two classes without a single error in
the test and the training sets. The discovery of such a large
number of distinct classifiers is an effect of factors such as
insufficient data, and complex inter-gene dependences etc.
Only some genes in each classifier may be truly responsible
for the separation and some others may be present due to
spurious statistical correlations. Discovery of core sets of
genes can help us in identifying the important genes that
contribute to the separation but by themselves do not have
enough statistical support to demonstrate the extent of their
influence.

4.1 Experiments

Our general methodology of experimentation was as fol-
lows. We first perform a coarse selection of the genes most
likely to be associated with the ALL/AML distinction. This
is done to weed out genes that are absolutely irrelevant or
those that do not have a significant correlation with the
classes. This step is necessary to bring down the number of
genes in the feature space from a few thousands to a more
manageable figure such as a few hundred or fewer. However,
this step is not essential, and might be counterproductive
since it does not consider contextual information. If one has
enough computer memory and time constraints are not im-
portant, the feature selection algorithm can be applied to
the entire feature space. The coarse selection is done by as-
signing a performance measure FDR (Fisher’s Discriminant
Ratio) to each gene (without any context) and picking the
top N genes. The value of NV one chooses depends on how
exhaustive one wants the search to be. Also, prior knowl-
edge of the importance of genes (or suspicion about a gene’s
importance) can be used to choose genes that might not be
automatically selected using this method. The performance

measure FDR is actually an approximation of the measure
J= trace(Sy)

= for a single dimensional feature set:
trace(Sw)

FpR — (=)’
(0f +03)

Intuitively, this gives high values for classes whose means
are well separated and whose standard deviations are small.
FDR assumes that the classes are equiprobable. We then
run the feature selection algorithm on the reduced feature
space.

We ran tests using three different performance metrics for
the feature selection algorithm: trace(Sy), J and another
metric

(Sp + (a * Sp * Sw))
Sw

where a is a tunable variable. J, biases the J measure to
give more importance to S and reduces to J when a = 0.
Our results showed that J almost always outperforms pure
Sp. For smaller feature-spaces (k < 15), Js outperformed J
for certain values of a. However, J, is highly dependent on
the value of a and the feature space itself. If one can find a
good way of tuning a, it might be a useful measure.

4.2 Feature Sets Output by Search

The feature selection algorithm returns a list of all the
top T and bottom B classifiers at every stage of the selection
process and their associated performance figure. The follow-
ing is a collage of snipped portions from the output of the
feature selection algorithm. Each line represents a classifier
- the first field is the number of genes/features constituting
the classifier, the second is the classifier itself. (Each gene
is denoted by a number in the set. For instance, gene 0 is
Zyxin.) The third field is the performance measure for that
classifier (in this case, it is Sy.) The level is related to the
depth of the search tree, and is the same as the number of
genes in each feature set.

Js =

Level # : 6

No of Subsets: 4472

6 {1,2,3,6,9,19} 0.466252
{1,2,3,6,9,16} 0.471257
{0,5,10,13,14,20} 3.358114
{0,13,14,15,20,23} 3.577219

6
6
6
6 {0,13,14,15,20,22} 3.581989

Level # : 7
No of Subsets: 4264

7 {1,2,3,6,9,16,19} 0.581111

7 {1,2,3,6,16,19,24} 0.612764

7 {0,8,13,14,15,20,22} 3.766830
7 {0,10,13,14,20,22,23} 3.841800
7 {0,13,14,15,20,22,23} 3.932278
Level # : 8

No of Subsets: 4066

8 {1,2,8,6,9,16,19,24} 0.706293
8 {0,10,13,14,15,20,22,23} 4.270266
Level # : 9

No of Subsets: 3877

9 {1,2,3,6,9,16,19,21,24} 0.839363

9 {0,10,13,14,15,18,20,22,23} 4.524065

Level # : 10
No of Subsets: 3697

10 {1,2,3,6,9,12,16,19,21,24} 0.978012

10 {0,5,10,13,14,15,18,20,22,23} 4.745728

Level # : 11

No of Subsets: 3526

11 {1,2,3,6,9,11,12,16,19,21,24} 1.143048
11 {0,5,8,10,13,14,15,18,20,22,23} 4.930569

Level # : 12
No of Subsets: 3363

12 {1,2,3,4,6,9,11,12,16,19,21,24} 1.310686

12 {0,5,7,8,10,13,14,15,18,20,22,23} 5.102854

Level # : 13

No of Subsets: 3208

13 {1,2,3,4,6,9,11,12,16,17,19,21,24} 1.480636

13 {1,2,3,5,6,8,9,12,16,17,19,21,24} 1.554465

13 {0,5,8,10,12,13,14,15,18,19,20,22,23} 5.179070
13 {o,s,7,8,10,13,14,15,17,18,20,22,23} 5.272804

Level # : 14

No of Subsets: 3060

14 {1,2,3,4,6,7,9,11,12,16,17,19,21,24} 1.652921
14 {2,3,4,5,6,7,8,9,11,12,16,19,21,24} 1.805969

14 {0,4,5,7,8,10,13,14,15,17,18,20,22,23} 5.440442

Level # : 15
No of Subsets: 2919

4.3 Trained Linear Classifiers

From the output of the feature selection program, we ei-
ther choose only those interesting feature-sets by using a
performance threshold, or all of them at once, and run the
batch—prediction program on the chosen sets. This program
constructs the corresponding classifier from each feature-set
in the batch. It works by training the weights associated
with the feature-set (using the modified-perceptron algo-
rithm) on the training data. It then tries to predict the
tumor classes for all the samples in the independent and the
training sets using the classification rule. Thus, the output
of this program is the final set of classifiers extracted from
the feature-space.

The following is a small sample of the output from the
batch — prediction program. The first field is the number of
genes in the classifier, the second is the classifier itself, and
the third field is the number of mis-classifications over both
the training and the independent datasets.

8 {0,5,10,14,15,18,22,23} 0
8 {0,5,10,13,14,15,20,22} 0
10 {o,s,8,13,14,15,18,20,22,23}

10 {o,8,10,12,13,14,15,20,22,23}

10 {o0,3,10,13,14,15,18,20,22,23}

12 {o0,7,8,10,11,13,14,15,18,20,22,23}

12 {o0,4,5,10,13,14,15,18,20,21,22,23}

12 {o0,4,8,10,13,14,15,17,18,20,22,23}

13 {o,4,s5,8,10,12,13,14,15,18,20,22,23}

13 {o,s,8,10,12,13,14,15,17,18,20,22,23}

13 {o,4,5,7,10,13,14,15,17,18,20,22,23}

13 {o,4,s5,8,10,13,14,15,17,18,20,22,23}

19 {0,4,5,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23} 0
19 {0,4,5,7 10,11,12,13,14,15,16,18,19,20,21,22,23} 1

WReNRNO

N O R

»8,9,
22 {0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23} 1
23 {0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23} 0
23 {0,1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23} 2
23 {0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23} 2

The actual output of good classifiers runs into hundreds.
From a starting feature-space of 60 genes, we found between
100-150 classifiers with 100% accuracy of prediction, while
varying T between 500 and 1000. There were also a large

number of classifiers with just 1 or 2 misclassifications. The
composition of an example predictor, which accurately clas-
sified all the 72 samples is as follows:

Zyxin, KIAA0097 gene, KIAA0212 gene, Macmarcks, Heat
Shock Protein 70 Kda(Gb:Y00371), Induced Myeloid Leukemia
Cell Differentiation Protein MCL1, FTL Ferrtin light polypep-
tide, ADA Adenosine deaminase, LYN V-yes-1 Yamaguchi
sarcoma viral related oncogene homolog, CD33 antigen (dif-
ferentiation antigen), Oncoprotein 18 (Opl8) gene, CTSD
Cathepsin D (lysosomal aspartyl protease), Major histocom-
patibility complex enhancer-binding protein MAD3, Tran-
scription Factor RELB.

Most predictors seemed to contain the gene Zyxin. The
composition of an example core (that did not contain Zyxin)
found in over 44 different classifiers of different sizes is as
follows:

Macmarcks, CD33 antigen (differentiation antigen), FAH
Fumarylacetoacetate, CTSD Cathepsin D (lysosomal aspartyl
protease), CCND3 Cyclin D3, Phosphotyrosine independent
ligand p62 for the Lck SH2 domain mRNA | Leukotriene C4
synthase (LTC4S) gene, RETINOBLASTOMA BINDING
PROTEIN P48.

A cursory examination of the functional properties of the
genes constituting this core is revealing. For instance, the
gene CD33 encodes cell surface proteins for which mono-
clonal antibodies have been demonstrated to be useful in
distinguishing lymphoid from myeloid cells.

4.4 Frequently Occurring Gene-Cores

Once a large number of such good classifiers are generated
and their performance is evaluated, our next task is to look
for information within the structural composition of these
classifiers. We would like to understand the biological sig-
nificance of why and how certain classifiers can discriminate
between the two classes accurately while others cannot. We
are looking for answers to questions such as: Is there any
significance in the way these genes are combined? What is
the meaning of strong patterns within the classifier compo-
sitions? Can we look at two classifiers that are similar in all
respects except for a few and draw conclusions from their
relative performance? Can we speculate about the function
of an unknown gene function given the knowledge of the
functions of other known genes within the classifier?

An approach to answering these questions is to look for
patterns of similarity within the classifier compositions. We
use the core — extraction algorithm to reveal the various
combinations of genes that are common to multiple distinct
classifiers. We used various parameters for the core size and
extracted a large number of cores, i.e gene subsets that oc-
cur in many different classifiers. Most cores are found to
be classifiers by themselves. It is interesting to note how
these cores can be combined with certain subsets of genes
to produce good classifiers but lose in predictive power when
combined with other gene subsets. Also, it was found that,
invariably, the removal of a core from a classifier degrades
classifier performance by a very large factor. Domain knowl-
edge of the functions of the genes constituting these cores
can be helpful in understanding the nature of the processes

that regulate the development of the tumors themselves.

Some sample snipped output from the core extraction al-
gorithm is given below. The first field represents the number
of genes in the core, the second is the core itself and the third
field represents the number of accurate classifiers in which
the core occurs.

{s,15,18,23,30} 36
{s,10,15,18,30} 15
{0,4,10,13,17} 12
{2,5,9,15,16,18} 8
{0,5,15,18,23,29} 26
{15,16,18,23,30,31} 6
{0,2,15,18,23,29} 5
{2,7,16,18,23,30} 7
1{s,15,17,18,23,29,30,39} 11

oo o0 00N

The following observations and conclusions are made based
on the number and composition of the best and worst classi-
fiers returned by the feature-selection algorithms: The aver-
age classifier performance is best when the number of genes
constituting the classifier is below 25. From this information
and the fact that the number of genes having significant in-
dividual correlation with the ALL/AML distinction is two
orders of magnitude greater, we can conclude that the inter-
actions/mutual dependencies play an important role in can-
cer differentiation and that the larger the subset of genes,
the greater the possibility of errors due to noise. This is a
good argument for a metric that evaluates features in the
context of other features (i.e. the classifier as a whole) and
not purely individual correlations. There are a huge number
of classifiers with zero prediction errors. Their compositions
vary quite a bit, indicating that there are many distinct
hyper-planes of separation between the two classes. Using
multiple classifiers in the prediction of a new sample can
be helpful as a corroborative aid. If many distinct classi-
fiers confirm the prediction, then it is a stronger and better
prediction.

4.5 Robustness Analysis

We performed a set of perturbation experiments to test
the robustness and validity of our methods in the presence
of noisy data. The real-valued elements of the dataset were
perturbed with random noise in an increasing sequence of
noise percentages. After each perturbation, the entire pro-
cess of feature selection, classifier training, and core extrac-
tion was repeated and the number and compositions of com-
mon classifiers and cores were compared and analyzed. All
experiments were run with a starting set of 40 genes (se-
lected using FDR) and minimum feature set size of 5. 100
top feature sets (according to J value) from each level were
chosen and the prediction algorithm run on them to choose
all the perfect classifiers (i.e. those with 100% accuracy).
Then the core extraction algorithm was run. The perfect
classifiers (PC's) produced by this technique for each level of
perturbation were compared with those produced with 0%
perturbation (i.e. the original data). The following table
lists the results of this test. Column A denotes the percent-
age of perturbation noise. Column B lists the the number of
PC's or perfect classifiers produced by the feature selection
and perceptron training methods from the perturbed data.
Column C is the number of PC'ss that are exactly the same
as those produced by the original data, and Column D lists
the percentage of cores extracted from the PC'ss that are
common to those extracted from the original data. (Cores
were chosen at sizes of 4, 6 and 8, and had to be present
in at least 3 PCss.) As can be seen, our methods work
surprisingly well in the face of noise.

5. CONCLUSIONS

Traditional statistical pattern recognition techniques are
inadequate for the datasets where the number of variables
far exceeds the number of data points. Our heuristic search
based method of selecting features generates a very large

LA [B[C |D |

0% (Original Data) | 51 | N/A | N/A
1% 59 | 48 100%
2% 54 | 46 95%

5% 27 | 24 100%
7% 20 | 18 100%
10% 5 4 100%
15% 3 |2 N/A
20% 3 [0 |N/A

Table 1: Results of the perturbation experiments

number of distinct feature-sets that are in turn used to
build accurate classifiers using a modified perceptron train-
ing based algorithm. The twin problems of computational
intractability and gene inter dependencies are alleviated by
our approach of using a heuristic for expanding only a small
set of feature-set nodes based on the performance of each
feature-set. The scatter based metrics we use are easily com-
puted and compare well with the output of the perceptron
for class separability information. Our efficient algorithm for
extraction of frequently occurring core gene-sets from the
classifiers reaped by the search produces many interesting
gene-cores. These gene-cores are the discovered knowledge
that can be very valuable and revealing to biologists.

6. REFERENCES

[1] Golub, T.R. and Slonim, D.K.Slonim et. al. Molecular
classification of cancer: class discovery and class
prediction by gene expression monitoring. Science
286(5349), pages 531-537, 1999.

[2] D.W.Aha and R.L.Bankert. A comparative evaluation
of sequential feature selection algorithms. In Proceedings
of the Fifth International Workshop on Artificial
Intelligence and Statistics, pages 1-7, 1995.

[3] S.I.Gallant. Perceptron based learning algorithms.
IEEE Transactions on Neural Networks, 1(2):179-191,
1990.

[4] Sergios Theodoridis and Konstantinos Koutroumbas.
Pattern Recognition. Academic Press, San Diego, CA,
1999

[5] N.S.Holter, M.Mitra, A.Maritan, et al. Fundamental
patterns underlying gene expression profiles: Simplicity
from Complexity. Proceedings of National Academy of
Science, V.97, no. 15, pages 8409-8414, July 18, 2000

[6] A.A.Alizadeh, M.B.Eisen, R.E.Davis, C.Ma et al.
Different types of diffuse large b-cell lymphoma identified
by gene expression profiling. Nature, 403:508-511, 2000

[7] M.B.Eisen, P.T.Spellman, P.O.Brown, D.Botstein.
Cluster analysis and display of genome-wide expression
patterns Proc. Natl. Acad. Sci., 95:14863:1/868, 1998

[8] Demiriz A., Bennett K., Breneman C., Embrechts M.,
”Support Vector Machine Regression in Chemometrics?,
Computing Science and Statistics, 2001.

[9] S. Dutoit, J.Fridly and, T.P. Speed. Comparison of
discrimination methods for the classification of tumors
using gene expression data. Technical report 576, Dept.
of Statistics, UC Berkeley.

[10] Chen Wu Optimal Feature Subset Selection
Algorithms for Unsupervised Learning. M.S. Thesis,
University of Cincinnati, Cincinnati, 2000.

