Secure K-NN Algorithm for Distributed Databases

Barrington Young, Raj Bhatnagar
University of Cincinnati, Cincinnati, OH, 45221
younbn,rbhatnag@ececs.uc.edu

Abstract

In this paper we present an algorithm for determining
k-nearest neighbor tuples for a given tuple in a set of geo-
graphically distributed databases. These databases form a
vertical partitioning of some implicit global database. The
computation is performed by exchanging minimum number
of higher level summaries so that even if they are captured
by an intruder to actual data tuples can ever be revealed.

1 Introduction

Collaborations among geographically distributed
databases are becoming essential for cooperative compu-
tations with their collective data. Security and privacy of
the data in individual databases is a crucial consideration.
Consider for example the situation of a credit card company
which stores its fixed customer data (name, address, etc.)
in one database, history of charge transactions in a second
database, vendor information in a third database, and
payment transactions by customers in a fourth database.
These four databases may reside in four different cities and
it is impossible to create an explicit join of these due to
size, security, and privacy constraints. Any pair taken from
these databases shares some attributes and the set of shared
attributes is different for different pairs, making it a vertical
partitioning of a large implicit global database. Now let us
say that the site storing the fixed customer data wants to
determine k closest customers for a given customer profile
and wants to determine the closeness based not only on the
fixed customer information but also on the payment history
and charge transactions’ patterns. Also, the fixed data site
does not need details of charges or payments and this data
must not be transferred over the network and thus exposed
to risk of capture.

1.1 Related Work

The task of clustering or analyzing data from a vertically
partitioned and geographically distributed set of databases

while preserving data privacy has been looked at from three
main points of view. The first view is to synthesize a global
perspective by sampling local databases or adding random
noise to the tuples [5]. The second view is to use actual data
from the local databases by employing some form of secure
multi-party communication protocol [1, 6, 7] to exchange
information. The third view is to exchange appropriate high
level data summaries between the databases [2, 3, 4]. A
special case of handling vertically partitioned databases is
one in which each row at each site corresponds to a fixed
key value and this work has been presented in [6]. The first
of the above views seeks to provide an approximation to
the global quantities. These methods can provide scalable
algorithms and work within some error bounds.

The second of the above views suffers from the exponen-
tial computational complexity of secure multi-party com-
putation. These algorithms are impractical for large dis-
tributed databases.

The third view applies to application areas where data
is vertically partitioned, an estimate of the global result is
not good enough, we want precise answers, the databases
are extremely large, and arbitrary patterns of attribute over-
lap occur in their schema. This is the most general view of a
need for an implicit join for vertically partitioned distributed
databases. Also, the interconnections of the databases can
have complex communication pathways which makes the
global function evaluation a daunting task. This third view
is the motivation for our formulation presented in the fol-
lowing sections.

To the best of our knowledge there is not much other
research work that explores the situations of unconstrained
overlap in the database schema with the computations being
performed in the implicit join of the databases.

2 Problem Description

We consider a situation in which there are n nodes of
a network and each node contains a local database, named
D, ...D,. There can be arbitrary overlaps in the schema
for these databases, that is, any two databases may share a
number of attributes. We use a graph G(V, E) to represent

the sharing pattern among the databases. The graph has n
nodes (|V'| = n), each respresenting a network node host-
ing a participating database. There is an edge between two
nodes when the corresponding databases share one or more
attributes. It is assumed that the attribute-names present in
each of the participating database are known to all the other
participating nodes. Any one special node, designated as
the learner node, may want to compute the k nearest neigh-
bors for a given tuple ¢, (determine the set T”). The result
of the global computation helps this learner node find a lo-
cal tuple which, in the implicit D, forms the global tuple t
that is closest to some global tuple formed by ¢. We use Eu-
clidean distance as the metric for determining the distance
between a pair of tuples.

The learner node uses a distributed implementation for
the computation for the distance function. It first computes
a directed acyclic subgraph (DAG) of GG which is the min-
imal sufficient graph for querying information from nodes
in order to complete the computation at the learner node.
To compute the minimum global distance between all pos-
sible global extensions of two local tuples, the learner node
first locally computes the Euclidean distance between the
two local tuples. It then sends queries to the other di-
rectly reachable children nodes in the DAG with informa-
tion about shared attributes, to extend the locally computed
distance with contributions from possible extensions of the
tuples in D. The local distance result is not sent over the
network. Ideally, a node needs to determine the influence
of the rest of the vertically partitioned data on the distance
between two local tuples, but this rest of the dataset exists
in the form of a number of individual databas e! s. Due to
multiple paths connecting a pair of nodes we need to induce
a tree of paths among database that is sufficient to simulate
the effect of the complete implicit D and avoids duplication
of an attributes influence on the distance value computed.
The learner, therefore, needs to decide on a minimally suffi-
cient set of communication pathways among the nodes that
will allow the prorogation of queries and the return of re-
sults to correctly infer the effect of the remaining implicit
dataset. The overlap in database schema may result in cy-
cles among the nodes in the G(V, E) and that makes the
task of communication difficult.

The computation network extracted from the graphs
G(V,.E) must be a directed and acyclic structure, and it
should help implement the implicit join of the databases
at its nodes. This directed graph provides parent/child rela-
tionships among the nodes and serves to control the move-
ment of information along the DAG. The Euclidean distance
between two real value containing tuples ¢’ and « is given as

dist(U,1) = /Y, (v; — u;)%. We reformulate this formula

for use on the extracted DAG computation network.

Let us say the set of participating nodes are D1, ..., D,.
The set of attributes on the nodes are X1, ..., X, with at-

tribute set X; on node D;, for 1 < ¢ < n. The set of all
attributes in the union of all the participating databases D;s
is denoted by us as X.

x= U x (1)

1<i<n

Given local databases D; and D;, with {i # j} =1...n,
they may share some attributes, called the set S; ; by us,
and we define the set of all those attributes that are shared
among all possible pairs of databases as:

SL7J={J}| (QSEXl)/\(l‘EX])/\(Z#j)} 2)

This set of all those attributes that are shared between any
two nodes is called by us as .S and it is the union of all .S; ;s,
that is:
S= U Sij 3)

1<i<k

1<5<k
The implicit join or the cartesian product of all the n
databases is denoted by us as D. Let r;(D) be row i of
this implicit D. Let s; C S be the set of all those shared
attributes that exist in the database D;. We define the func-
tion

7: ri(D) X 85 — <U1,-~-7’U|sj|>

which takes the row r; from the database D, and a set of
shared attributes as inputs and returns the vector of shared
values from the row r; that attributes in s; take. That is, this
function selects only the values of the shared attributes from
a row (tuple) to passed on to a child node as a query. For
example, we assume 7 (D) = (22,5,12,43,7,9,15), and
s = (1,3,4) then T((22,5,12,43,7,9,15),(1,3,4)) =
(22,12, 43). We define the second function

M : T (r;(D),s;) x s; x Dj — {true, false}

which takes as its inputs the vector of shared values result-
ing from 7 (r;(D), s;), the shared attribute set s; on node
Dj, and the database D;. It checks the database D; and
returns true if there is at least one row on the database D
whose shared attribute values match those passed as input
parameter, and false otherwise. That is, this function re-
turns true only if there is at least one tuple in D; which con-
tains all the values for the shared attributes that are passed
to it after being generated by the 7 function.

In spirit, each local database can be viewed as a projec-
tion of the implicit global database D. Scope of a projection
of D can be further narrowed by specifying only a specific
set of values for the shared attributes. We take the set of all
shared attributes S and populate it with all possible values
for attributes. This set can be constructed and populated by
any of the participating databases. Taking a row from this S
defines a subset of tuples from D which share the values se-
lected. Such a projection for all the rows in S is sought to be

D = {di,ds,ds}
dq do ds
x1 Xo | wo X3 X4 | T4 X5 T
1 2 3 1 3 1 5 5
2 2 4 9 3 3 6 11
6 3 7 8 2 2 7 4
3 2 2 1 8 11
4 6 1 3 9 5
7 5 1 2 10 8
(@)
S Ds
dy
To X4 x1 x> X3 X4 XTs X
3 2 6 3 1 3 6 11
3 3 6 3 1 3 9 5
4 1 6 3 2 2 7 4
4 3 6 3 2 2 10 8
7 1
7 2

(B)

Table 1. Distributed database and implicit pro-
jection using Shared.

captured by the following expression. The projection space
of D for a given set of shared attributes S is that subset of
tuples in D for which M is true for any one row of attribute-
values in the table of shared-value tuples for S. That is, Ds
is:

DsE {r(D)]
M(T (ri(D), [)): [,) A) € X} “)
1<i<|D|

That is, Dy is that subset of tuples from the entire D whose
shared attributes match the values specified in at least one
tuple in the set S. The example in Table 1 above shows
three component databases, the set of shared attributes S
with some rows of possible attribute values, and a projection
of D for the given S.

Formally, from the learner node’s perspective, it needs
to compute dist(r;(Ds), r;(Ds) for its local tuples r; and
r;. An instance of computation may require any one of the
following: (i) compute the closest r; for a fixed r;; (ii) de-
termine those two rows r; and r; of D for which the distance
is minimum amongst all such pairs of rows; and (iii) Given
two subsets of rows, P; and P» in D, determine r; € P;
and ro € P such that the distance between them is the
smallest for all pairs of r; and rs.

Privacy considerations limit the amount and nature of in-
formation that can be disclosed by one database to other
participating databases. Let us say the node k initiates the
computation to determine the row r; € D that is closest to
some row r; known to node k. Once this r; is determined
the node £ should get to know the values of only those at-
tributes of r; that are local to node k. The values of all other
attributes that reside in other nodes but not in node k£ must
not be disclosed to k. For example, a hospital may want
to find a patient r; with a history very similar to another
patient r; taking into account the databases at the doctor’s
office and also at the insurance companies. But when such a

patient is found his information from doctor’s and insurance
company’s databases must not be revealed to the hospital.

3 Algorithm

Computation of the nearest-neighbor pair of rows in the
implicit D depends on the distance function being used and
also the methods for handling the communications among
the nodes. The adaptation of the distance function is cov-
ered below followed by the specifics for the communication
structure.

3.1 Distance Function

As indicated in section 2 above we use the Euclidean
distance between two rows for determining the distance be-
tween them. We use the notation dist, ({...)"™,(...)"),
where D; for i = 1...k is the local database and super-
scripts r1 and ro are the row numbers in the local D; for the
actual data rows enclosed in the angle brackets (({...)). In
the example databases shown in table 1 above, the database
D wishing to compute the distance-square between rows
rq and 79 is represented as:

dist, ((1,2)",(2,2)?) ®)

For any two global tuples of D, only a subset of attributes
may reside on any single node. Therefore, the local compo-
nent of the global distance between two rows is the distance
between the locally resident attributes of the two rows. Each
component of the distance function is a non-negative quan-
tity. For computational ease, we maintain and communicate
among nodes the square of the local distance between pairs
of rows. A learner node only needs to compute the closest
rows on a local site from the perspective of global distances,
and the actual distances among individual non-resident at-
tributes are not needed at the learner site.

Two local rows, r; and 75, on the learner node corre-
spond to two sets of rows, P; and P, in the projection space
D such that:

P1 = {TL(Ds) ‘ M(T(TZ(D), 81),8177“1)} (6)

P2 = {TL(Ds) ‘ M(T(TZ(D), 81),3177“2)} (7)

That is, P; is the set of all those tuples in D that have
the same values of the shared attributes as those in ry. If
the shared attribute values of r; and ro are identical then
P, = P,. Our objective now is to find a row in P; and a
row in Ps such that the distance between them is the min-
imum for all possible choices of rows from these two sets.
It is these two sets or rows that the distance function must
correctly find the distance between (see figure 1). Each
node D; computes dist?(7,) and using the communica-
tion DAG requests additional distance components from its

Kk
|
|
T ,_I\

Figure 1. Nearest Neighbor on the projected
space

children (C;) nodes. The children nodes respond with their
components of distance values to the parents (R;). We de-
fine p;|(g, s;) to mean the set of rows of database D; se-
lected by matching attribute-value tuples ¢ of the shared at-
tributes s; to the tuples of a local database.

dist?(ri,re) = distQDi (r1,7m9) +
Yiec, AistX: (pi (T (r1,55), 85),
pil{T(r2,55),5;))

®)
where dist X is the same distance function dist with the dif-
ference that it returns the minimum of the pairwise distances
between two rows, one row taken from each distinct set of
rows, and also, this distance component excludes the shared
attributes from the distance component. This exclusion is to
ensure that their contribution, which has been counted once
by the parent node, is not double-counted. A detailed imple-
mentation of these conditions has been included in our tests
results reported in this paper. This latter part of the distance
value (distX) is sent from a child node to all its parent re-
questor nodes in R;. The function distX may have to find
the distance between: 1) two rows, 2) a row and a set of
rows, or 3) two sets of rows. It must also respond to the
situation of one of the sets being empty. An empty set in-
dicates that a row that exists in a requester will be pruned
from the projection. A node might also have to return dis-
tance between two identical sets of rows.

If a node receives a request with both sets of the rows be-
ing the same then the minimum distance is computed within
the members of the single set. If both parent-rows result in
distinct sets of rows at the child node, then the minimum
distance is computed between every pair of rows between
the two sets. If any request results in an empty set of rows
at the child node then the requester is notified that the query
must be removed from the system because of the absence
of global tuples with the prescribed set of shared attribute
values. The result is propagated back to the originator of
the request.

3.2 Nearest Neighbors

To compute the single nearest neighbor for a given tu-
ple ¢ from rows in the learners database each row is paired
with ¢ and the distance function computed by determining
the distance on the local database and then determining the
contribution of the distributed databases using the commu-
nication network extracted by the DPCN. Two algorithms:
the Learner; and the Participant, work in consort to produce
the final result.

The learner algorithm extracts the communication net-
work, and then notifies each node of their parents and chil-
dren nodes for this computation. The learner takes each
row on its database and computes the local distance from
every single nearest neighbor for a given tuple ¢ from rows
in the learners database each row is paired with ¢ and the
distance function computed by determining the distance on
the local database and then determining the contribution of
the distributed databases using the communication network
extracted by the DPCN. Two algorithms: the Learner; and
the Participant, work in consort to produce the final result.

The learner takes each row on its database and computes
the local distance from every other row and then contacts its
children to furnish their components of distance based on
the attributes shared between them. If a child reports back
that a query request produced no match on its local database
or any of is children then this row-pair is discarded and next
one selected. For each row that is not discarded it stores
the minimum distance to all other non-discarded rows. In
addition to the distance the learner stores all queries made
to a node so that any duplication of request can be handled
locally. Once the computation is completed a message is
sent to notify all the participants to cleanup all such stored
values.

Algorithm #1: (Learner)

Input: database

Output: rows in projection with nearest neighbor
Algorithm #3: DPCN

1. Parents: P =1

2. Children : C = {DPCN output}

3. Notify all nodes of their Parents and Children
4. for each row e;

5 for each row e; # e;

6. temp = dist?(e;, ;)

7. if temp > min so far, GOTO next ¢;

8 if query for ey, e; send before, lookup result
9 else foreach r € C

1

0. result = D,. :: Participant(T (e;, $;),
7 (ej,5r))
11. if result # NOTPRESENT (e;) or

NOTPRESENT(e;) then

12. compare and store

13. else discard e; and/or e;, GOTO next
14. endif

15. endfor

16. endfor

A participant node in the tree receives request contain-
ing two not necessarily distinct query-rows. If both are the
same then one query is ran to find a set of rows on the local
database. For each row in the set the distance from the other
rows are computed. The participant makes a recursive call
to its children to furnish their distance value based on the
shared attributes values from the two rows. This process for
the participant continues until there is a node with no chil-
dren. The leaf node computes its local distance and returns
the minimum value to its parents.

Algorithm #2: (Participant)

Input: (t,), (t;) shared tuples

Output: (MINdist,valid;, valid;)

1. R; = query(t;), and R; = query(t;)

2. if R; = 0 or R; = () return appropriate message
3. foreache; € R;

4. foreache; € (R; —{e;})

5. temp = dist?(e;, e;)

6. if query for ey, e; sent before, lookup result

7. else foreach r € C

8. result = D, :: Participant(T (e;, Sy),
T(e;s0)

9. if result # NOTPRESENT (e;) or

NOTPRESENT (ej) then

10. temp < temp + result

11. else discard e; and/or ¢;

12. store failure, GOTO next

13. endif

14. store min (temp)

15. endfor

16. endfor

17. if valid dist: output min stored value (...)
18. else: output(..., which row(s) failed)

The algorithm for the single nearest neighbor can be eas-
ily extended to storing the & nearest neighbors at the learner
site. A buffer of size k is maintained at the learner site and
initially the first k rows of the database are included in this
buffer in order of their global distance from the tuple ¢. Any
new row found in D; that has a distance value less than the

largest value in the buffer, is included in the buffer and the
row with the largest value is discarded from the buffer.

3.3 Privacy Analysis

In the algorithms presented above each node can de-
termine the k nearest tuples to a given tuple in its own
databases, but determined in the context of all the other
participating databases. No data tuples are ever transferred
from one database to the other. The only information re-
quested by one database from others is of the following
form: Given some values of shared attributes (between your
site and my site) for tuple 1 and also the similar information
for tuple 2, find all tuples in your database that match tu-
ple 1 (set P1); and that match tuple 2 (set P2); then find a
pair of tuples by taking one tuple from set P1 and one tu-
ple from P2 such that their distance is minimum for choices
of tuples from P1 and P2; and report this distance back to
the querying node. From the perspective of an intruder it
is impossible to infer any data tuples even if the exchanged
distance values are captured.

4 Experimental Results

Centrally generated shared aribute valuesvs Centrally generated shared attribute values vs.

2000
i o
—Centralized o iz
£ —DPCN
20| —DPCN £
)
1
B 5™
g -
égm} 2 5w
i e
HE :
05 10 B 2 %
0 5 0 15 2 5 Number of discrete values for each shared
Number of discrete values for each shared attribute atfribute
(A) (B)

Figure 2. Performance Comparison

We compare the results of this formulation with our pre-
vious work in [2, 3, 4] in which the shared values tuples
were generated at a central site and sent to all participating
nodes. In this formulation used as a benchmark the learner
node sets up a direct communication link with each other
database and in effect forms a center-and-spoke structure
rather than the tree structure of communication constructed
here. The tests were done with each shared attribute hav-
ing 5, 10, 15, and 20 different possible discrete values.
The database size was kept small (only 10 to 100 rows).
The result is shown in the graphs in figure 2 (A),(B). As
can be seen in these graphs the message counts and the to-
tal CPU time in our formulation presented here are signif-
icantly smaller than in the centralized version. A central

DPONwerstcase perfomence Inividatrefor suessive vald s
L) peprrsee—
—Locd CPUTi
B Rt
-
: ‘?‘g
3
oo
§ 10
) B "5 0 5 D B9
FIE T T ‘
Jog)-Aveage urberf owsineachlocl e Pa sty Loamer

© D)

Figure 3. Performance Comparison

node sending messages to all the other nodes results in ex-
ponential growth in both, the CPU time and the message
count. Our new method shows a cubic complexity in num-
ber of messages exchanged.

A second test was done to demonstrate the scalability of
our algorithm and figure 3 (C),and (D). show these results.
These results were obtained on a singly-linked chain of four
nodes. The number of rows in each local database was var-
ied as 100, 250, 500, 1000, and 2000. The plot in (C) shows
the total accumulated CPU time used to do local processing
on all the nodes compared to the time waiting for network
response. The network time in (C) includes the local pro-
cessing time and the communication wait time. The results
show that one is a constant multiple of the other.

In our implementation the intermediate nodes in the net-
work store information such as minimum distance between
a pair of rows after taking into account the results obtained
from the children nodes. This is to avoid a duplication of ef-
fort in case the same information is needed again. From the
parent node we start the computation for finding the near-
est tuple for each tuple in the local databas. The graph in
Figure 3 (D) shows the total CPU time required by a tuple
for finding its nearest neighbor as we go down the list of
tuples in the local database. It can be seen that the trend is
tending downwards showing that the later tuples need less
time because they can reuse some of the results residing at
intermediate nodes.

5 Discussion and Conclusion

We have shown in this paper an example of commu-
nication and computational methodology that can be used
to perform global computations across geographically dis-
tributed databases by exchanging only summaries and thus
preventing the transfer of any data tuples across the net-
work. The case presented in this paper relates to finding
k nearest tuples to a given global tuple in the vertically par-
titioned distributed databases. This operation in itself is a

useful query and is also a building block for more complex
pattern discovery and classification algorithms. We have
demonstrated significant reduction in communication and
computational costs as a result of our proposed methodol-

Ogy
References

[1] A.C.C. Yao, "How to generate and exchange secrets”,
Proceedings 27*" IEEE Symposium on Foundations
of Computer Science, IEEE, 1986 pp. 162-167

[2] R. Bhatnagar, S. Srinivasan. Pattern Discovery in Dis-
tributed Databases, Proceedings of the AAAI97, pp
503-508.

[3] Young B. R., Raj B. Computations in Distributed
Knowledge Environments, Proceedings of ADCOM-
99 conference, held in December 1999 at Roorkee, In-
dia.

[4] Bhatnagar, R.,’Uncertainty reasoning using dis-
tributed databases,” in IPMU’00, 8th International
Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems,
Madrid, Spain. 2000.

[5] Kargupta, H., Huang, W., Krishnamoorthy, John-
son, E., 2000, Distributed Clustering Using Collec-
tive Principal Component Analysis. in Knowledge and
Information Systems Journal. Volume 3, Number 4,
2000 pages 422-448.

[6] Jaideep, V., Chris, C.,*Privacy Preserving Association
Rule Mining in Vertically Partitioned Data,” in Pro-
ceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining,
Edmonton, Alberta, Canada, 2002, pp. 639-644.

[7] Vaidya J., Chris C., 2003, Privacy-Preserving K-
Means Clustering over Vertically Partitioned Data in
Conference on Knowledge Discovery in Proceedings
of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, Washing-
ton, D.C., 2003: 206-215, ACM Press New York, NY,
USA.

